M.E Semester: 3 Mechanical Engineering (Thermal Engineering) Subject Name: EXERGY ANALYSIS OF THERMAL SYSTEMS

A. Course Objective

- To present a problem oriented in depth knowledge of Exergy Analysis Of Thermal Systems
- To address the underlying concepts and methods behind Exergy Analysis Of Thermal Systems.
- B. Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total	Evaluation Scheme				Total	
301	DJECI		т	D	Total	Credit	T⊢	IEORY	IF	IE CIA		
CODE	NAME	L	'	, ,	Total		THEORY		IL.	CIA	VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
MET303-C	Exergy Analysis of thermal System	3	0	0	3	3	3	70	30	20	0	120

C. <u>Detailed Syllabus</u>

- 1. Basic exergy concepts: classification of forms of exergy, concepts of exergy, exergy concepts for control volume, physical exergy, exergy concepts for closed systems analysis, non flow analysis
- 2. Elements of Plant Analysis: Control volume analysis, criterion for performance, pictorial representation of exergy balance, exergy based property diagram.
- 3. Exergy Analysis in Process: Expansion process, compression process, heat transfer process, mixing process, separation process, and combustion processes.
- 4. Energy and Exergy Analysis of gas turbine, steam power plant, captive power plant, combined cycle power plant, refrigeration plant, heat exchanger.
- 5. Tutorials: This shall consists of solution of examples based on above topics

D. Lesson Planning

Sr.No.	Date/Week	Unit No.	% Weightage	Topic No:
1	1 st ,2 ^{ed} ,3 ^{ed}	Unit 1	20 % .	1
2	4 th ,5 th ,6 th	Unit 2	20 %	2
3	7 th ,8 th ,9 th	Unit 3	20 %	3
4	19 th ,11 th ,12 th	Unit 4	20 %	4
5	13 th ,14 th ,15 th	Unit 5	20 %	5

E. Instructional Method & Pedagogy

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- **2.** Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all topics while teaching and conduction of all examinations.
- **3.** Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- **4.** One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- **5.** Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of five marks in the overall internal evaluation.
- **6.** Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.

F. Students Learning Outcomes

• The student can identify different areas of Exergy Analysis Of Thermal Systems . Can find the applications of all the areas in day to day life.