M.E Semester: 3 Mechanical Engineering (Thermal Engineering) Subject Name: MODELING, SIMULATION & COMPUTER APPLICATION

A. Course Objective

- To present a problem oriented in depth knowledge of Modeling, Simulation & Computer Application
- To address the underlying concepts and methods behind Modeling, Simulation & Computer Application

B. Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total Evaluation Scheme				Total		
		_	т	D	Total	Credit	THEORY		IE	CLA	PR. /]
CODE	NAME	L	'	Р	Total		IH	EURY	IE	CIA	VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
METH301	Modeling Simulation & Computer Application	4	2	0	6	5	3	70	30	20	30	150

C. Detailed Syllabus

- 1. Concept of system and environment; Continuous and discrete system; linear and nonlinear systems; stochastic activities; static and dynamic models; principles used in modeling; Models classifications, Mathematical models, Physical models, analog models and others, Estimation of model parameters;
- 2. Technique of simulation; experimental nature of simulation; numerical computation techniques; continuous system models; analog and hybrid simulation; feedback systems; Stochastic variables; discrete and continuous probability functions; random numbers; rejection method.
- 3. Computer technique for simulation; computer generation of Pseudo random; Application, Modeling of Civil, Electrical and Mechanical components of small hydro and Renewable Energy Projects.
- 4. Introduction to SCILAB/MAT lab Environment, Defining Matrices, Matrix Manipulation Data Structures, 2D Graphics, 3D Graphics, Flow Control, Editor/Debugger window
- 5. Creating Matlab functions, Improving code performance, Error Correcting, Various Simulation tools.

D. Lesson Planning

Sr.No.	Date/Week	Unit No.	% Weightage	Topic No:
1	1 st ,2 ^{ed} ,3 ^{ed}	Unit 1	20 % .	1
2	4 th ,5 th ,6 th	Unit 2	20 %	2
3	7 th ,8 th ,9 th	Unit 3	20 %	3
4	19 th ,11 th ,12 th	Unit 4	20 %	4
5	13 th ,14 th ,15 th	Unit 5	20 %	5

E. Instructional Method & Pedagogy

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- 2. Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all topics while teaching and conduction of all examinations.
- 3. Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- **4.** One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- **5.** Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- **6.** Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- **7.** The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- **8.** Experiments shall be performed in the laboratory related to course contents.

F. Students Learning Outcomes

- The student can identify different areas of Modeling, Simulation & Computer Application
- Can find the applications of all the areas in day to day life.

G. Recommended Study Materials

- **Text & Reference Books:**
- 1. System Simulation, Geoffrey Gordon Prentice-Hall
- 2. System Simulation, The Art and Science, Robert E. Shannon Prentice Hall
- 3. System Modeling and Control, J. Schwarzenbach and K. F. Gill, Edward Arnold
- 4. Modeling and Analysis Of Dynamic Systems, Charles M. Close & Dean K. Frederick Houghton Miffin
- 5. Simulation of Manufacturing, Allan Carrie John, Wiley & Sons
- 6. Computational Heat Transfer, Y. Jaluria and K. E. Torrance Hemisphere Publishing 7. System Simulation Dr. D. S. Hira MOI SARVA VISHWAVIDYA