M.E Semester: 2 Mechanical Engineering (Thermal Engineering) Subject Name: ENERGY CONSERVATION & MANAGEMENT

A. Course Objective

- To present a problem oriented in depth knowledge of Energy Conservation & Management
- To address the underlying concepts and methods behind of Energy Conservation & Management

B. Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total	Evaluation Scheme				Total	
30	IDIECI		т	D	Total	Credit	ть	IEODV	IE	CIA PI		
CODE	NAME	L	'		TOtal		THEORY		IE	CIA	VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
METH205-D	Energy Conservation & Management	3	0	0	3	3	3	70	30	20	0	120

C. Detailed Syllabus

- 1. Energy scenario, Principles of energy Conservation, Energy consumption pattern, Resource availability.
- 2. Evaluation of thermal performance, calculation of heat loss heat gain, estimation of annual heating & cooling load factors that influence thermal performance, analysis of existing buildings.
- 3. Organizing for energy conservation programme, the energy audit and energy information system, technology for energy conservation, co-generation of process, steam & electricity, computer controlled energy management
- 4. Strategies for electricity and management, setting up an energy management programme, electricity saving technique by category of end use, Electrical end use in industries, energy & power management in industry, energy management strategies for industry, demand management.
- 5. Importance and role of energy management, Energy economics, Payback period, Internal rate of return, life cycle costing.

D. Lesson Planning

Sr.No.	Date/Week	Unit No.	% Weightage	Topic No:
1	1 st ,2 ^{ed} ,3 ^{ed}	Unit 1	20 % .	1
2	4 th ,5 th ,6 th	Unit 2	20 %	2
3	7 th ,8 th ,9 th	Unit 3	20 %	3
4	19 th ,11 th ,12 th	Unit 4	20 %	4
5	13 th ,14 th ,15 th	Unit 5	20 %	5

E. Instructional Method & Pedagogy

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- **2.** Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all topics while teaching and conduction of all examinations.
- **3.** Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- **4.** One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- **5.** Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- **6.** Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.

F. Students Learning Outcomes

- The student can identify different areas of Energy Conservation & Management
- Can find the applications of all the areas in day to day life.

G. Recommended Study Materials

Text & Reference Books:

- 1. C.B.Smith, Energy Management Principles, Pergamon Press, New York, 1981.
- 2. W.C. Turner, Energy Management, Hand Book.
- 3. Hamies, Energy Auditing and Conservation, Methods, Measurements, Management and Case Study, Hemisphere, Washington, 1980.
- 4. Kreith, Economics of Solar Energy and Conservation Systems, Vol -3.
- 5. W.F.Kenny, Energy Conservation in Process Industry.
- 6. Trivedi, P.R, Jolka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997.
- 7. Witte, Larry C, Industrial Energy Management and Utilization, Hemisphere Publishers, Washinton, 1988.

