M.E Semester: 1 Mechanical Engineering (Thermal Engineering) Subject Name: INSTRUMENTATION FOR ENGINEERS

A. Course Objective

- To present a problem oriented in depth knowledge of Instrumentation For Engineers
- To address the underlying concepts and methods behind Instrumentation For Engineers

B. <u>Teaching / Examination Scheme</u>

SUBJECT		Teaching Scheme				Total	Evaluation Scheme				Total	
,	ODDLCI	1.5	Т	D	Total	Credit	ТН	EORY	IF	CIA	PR. /	
CODE	NAME				Total			LOKI	IL.	CIA	VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
METH104	Instrumentation for Engineers	3	0	2	5	4	3	70	30	20	0	120

C. Detailed Syllabus

- 1. Significance of Measurement and Instrumentation: Introduction; generalized configuration and functional stages of measuring systems. The transducer and its environment; an overview; sensing process and physical laws. Types of measurement problems, Transducer classification and their modeling; Information, Energy and Incremental Models; Characteristics of instruments, design and selection of components of a measuring system.
- 2. Dynamic Response of Instruments: Mathematical model of a measuring system, response of general form of instruments to various test inputs; time-domain and frequency domain analysis. Elementary transfer functions and Bode plots of general transfer functions.
- 3. Errors in Measurement and its Analysis: Causes and types of experimental errors; systematic and random errors. Uncertainty analysis; computation of overall uncertainty; estimation for design and selection for alternative test methods.
- 4. Transducers and Transduction Principles: Developments in sensors, detectors and transducer technology; displacement transducers; force, torque and motion sensors; piezoelectric transducers; capacitive type transducers; Strain gage transducers; accelerometers, pressure transducers based on elastic effect of volume and connecting tubing.
- 5. Data acquisition and Signal Processing: Systems for data acquisition and processing; modules and computerized data system; digitization rate, time and frequency domain representation of signals, and Nyquist criterion.
- 6. Flow measurement: Flow visualization, shadowgraph; schlieren and interferometric techniques; Pilot static tubes; hot wire anemometers; Laser Doppler velometer; flow measurements using Coriolis Effect.
- 7. Temperature and Heat Flux Measurement: Thermoelectric sensor; electric resistance sensor; thermistors; radiations pyrometer; Temperature measuring problem in flowing fluids, dynamic compensation.

D. Detailed Syllabus / Lesson Planning

Sr.No.	Date/Week	Unit No.	% Weightage	Topic No:
1	1 st ,2 ^{ed} ,3 ^{ed}	Unit 1	20 % .	1
2	4 th ,5 th ,6 th	Unit 2	20 %	2,3
3	7 th ,8 th ,9 th	Unit 3	20 %	4
4	19 th ,11 th ,12 th	Unit 4	20 %	5
5	13 th ,14 th ,15 th	Unit 5	20 %	6,7

E. Instructional Method & Pedagogy

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- 2. Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weight age should be given to all topics while teaching and conduction of all examinations.
- **3.** Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- **4.** One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- **5.** Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- **6.** Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- **7.** List of Experiments:
 - 1. STUDY OF DISPLACEMENT TRANSDUCER.
 - PRESSURE TRANSDUCER.
 - 3. AC BRIDGE- SCHERING'S BRIDGE.
 - 4. AC BRIDGE- MAXWELL'S INDUCTANCE, CAPACITANCE BRIDGE.
 - 5. DC BRIDGES -WHEATSTONE BRIDGE
 - 6. DC BRIDGES -KELVINS DOUBLE BRIDGE
 - 7. INSTRUMENTATION AMPLIFIER
 - 8. A/D CONVERTER AND D/A CONVERTER
 - 9. STUDY OF TRANSIENTS
 - 10. CALIBRATION OF SINGLE-PHASE ENERGY METER
 - 11. MEASUREMENT OF THREE-PHASE POWER ANDPOWER FACTOR
 - 12. CALIBRATION OF CURRENT TRANSFORMER
 - 13. MEASUREMENT OF IRON LOSS
 - 14. ULTRASONIC MEASUREMENT TECHNIQUES

F. Students Learning Outcomes

- The student can identify different areas of Instrumentation for Engineers.
- Can find the applications of all the areas in day to day life.

G. Recommended Study Materials

- Text & Reference Books:
- 1. Measurement System Application and Design by Doebelin, McGraw Hill Publication.
- 2. Experimental Methods for Engineers by Holman J.P., McGraw Hill Publication.
- 3. Transducers in Mechanical and Electronic Design by Harry L. Trietly, Marcel Dekker.
- 4. Data Acquisition for Signal Analysis by Yuen, John Wiley and Sons.
- 5. Mechanical Measurements (Fifth Edition) by Beckwith, Marangoni and Lienhard, Addision Wesely
- 6. Measurement in Heat Transfer by Eckert and Goldstein, McGraw Hill Publication.
- 7. Fluid Mechanics Measurement by Goldstein, Hemisphere