MACHINE TOOL DYNAMICS-EL 1 Semester III (Production Engineering) SUB CODE: MEMPR302-D Teaching Scheme (Credits and Hours)

Teaching Scheme				Total Evaluation Scheme					Total	
т	т	р	Total	Credit THEORY		IE	CIA	PR. / VIVO	Marks	
L	1	Г	Total		Hrs	Marks	Marks	Marks	Marks	
Hrs	Hrs	Hrs	Hrs							
3	0	2	5	4	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- To learn various concepts related to dynamics of machine tool
- To have practical purview of various vibration damping techniques

LESSON PLANNING

SR.NO	CHAPTER NO	DATE/WEEK	%WEIGTAGE		
1	1,2	$1^{\text{st}} 2^{\text{nd}} 3^{\text{rd}}$	20		
2	3,4	$4^{\text{th}}5^{\text{th}}6^{\text{th}}$	20		
3	5,6	7 th 8 th 9 th	20		
4	7	$10^{\text{th}} 11^{\text{th}} 12^{\text{th}}$	20		
5	8	13 th 14 th 15 th	20		

Total hours (Theory): 45, Total hours (Practical):30, Total hours: 75

DETAILED SYLLABUS

Chap. No.	Торіс
1	Vibration theory: Review of systems with one and two degrees of freedom, damped, undamped free and forced vibrations, beat phenomenon.
2	Transmissibility of vibration and vibration isolation. Vibration measurement.
3	Eigen value problem using lumped mass technique, application to simple structures with damping
4	Chatter in Machine tools: Basic pattern of chatter in metal cutting. Regenerative chatter, node coupling. Limit width of cut. Importance of negative real component of receptance. Dynamic cutting force co-efficient
5	Prediction of machine tools instability. Study of chatter behavior of lathe, drilling and milling machines. C.I.R.P., rig stick-slip phenomenon
6	Stability of Machine tools: Individual steps in the procedure-Directional factors cutting tests
7	Measurement of dynamic data by excitation tests. Evaluation of the test examples of the analysis of the stability of machine tools like Horizontal knee-type milling machine, vertical knee-type milling machine, center lathes
8	Damping in Machine tools: Material and system damping. Dampers – Dynamic, impact and active type. Methods of improving damping in machine tools. Examples of the use of dampers, practical design consideration. Dynamic measurement of forces and vibration – Oscillating tools. Vibration isolation system.

LIST OF PRACTICALS

Sr.	Practical Content
No.	
1	TO FIND THE NATURAL FREQUENCY OF SINGLE DEGREE OF THE GIVEN SYSTEM
2	TO FIND NATURAL FREQUENCY OF TWO DEGREE OF THE GIVEN SYSTEM
3	ANALYSIS OF STABILITY OF CENTRE LATHE
4	ANALYSIS OF STABILITY OF HORIZONTAL MILLING MACHINE
5	ANALYSIS OF STABILITY OF VERTICAL MILLING MACHINE
6	PREDICTION OF CHATTER BEHAVIOR IN LATHE
7	PREDICTION OF CHATTER BEHAVIOR IN MILLING MACHINE
8	MEASUREMENT OF FORCES AND VIBRATIONS IN LATHE
9	MEASUREMENT OF FORCES AND VIBRATIONS IN MILLING MACHINE
10	DIRECTIONAL FACTORS CUTTING TESTS IN LATHE, MILLING AND DRILLING MACHINE

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all units while conducting teaching & examination.
- Attendance is compulsory in lectures and Tutorial.
- Viva Voce will be conducted at the end of the semester of 30 Marks.
- One internal exam of 30 marks is conducted as a part of Mid semester evaluation.

STUDENTS LEARNING OUTCOMES:

At the end of the course the students will gain an experience vibration analysis of machine tools

References:

- 1. F.Keeningsberager and J. Tlusty, Machine Tool Structure, Porgamon press, 1970.
- 2. G.Sweeney, Vibration of Machine Tools, Machinery Publishing Co. 1971.
- 3. Walter C. Hurty and M.F. Bubinstein, Dynamics of Structures, Prentice Hall, 1967.
- 4. W.T.Thomson, Vibration Theory And Applications, Vibration Theory And Applications, 1965.
- 5. S.A. Tobias, Machine Tool Vibrations, Blackie publications, 1965.