RAPID PROTOTYPING & TOOLING SYSTEM-EL 1

Semester III (Production Engineering) SUB CODE: MEMPR302-C Teaching Scheme (Credits and Hours)

	Teaching Scheme				Total	Total Evaluation Scheme			Total		
T	т	D	Total	Credit	THEORY		ΙE	CIA	PR. / VIVO	Marks	
	L	1	P	Total		Hrs	Marks	Marks	Marks	Marks	
]	Hrs	Hrs	Hrs	Hrs							
	3	0	2	5	4	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

To learn various concepts related to rapid prototyping.

LESSON PLANNING

SR.NO	CHAPTER NO	DATE/WEEK	%WEIGTAGE
1	1,2,3	$1^{\text{st}} 2^{\text{nd}} 3^{\text{rd}}$	20
2	4	4 th 5 th 6 th	20
3	5,6	7 th 8 th 9 th	20
4	7	10 th 11 th 12 th	20
5	8	13 th 14 th 15 th	20

Total hours (Theory): 45, Total hours (Practical):30, Total hours: 75

DETAILED SYLLARUS

DETA	DETAILED SYLLABUS					
Chap	Topic					
. No.						
1	Product Development Cycle:					
2	Influence of Innovations on Product Development:					
	Impact on economy, export competitiveness, design as a strategy to win international market and					
	Innovation process					
3	Rapid Product Development:					
	An Overview virtual prototyping and testing technology, Physical Prototyping and Rapid					
	Manufacturing technologies and Synergic Integration Technologies					
4	Virtual Prototyping and Testing:					
	Geometric modeling: Types of Geometric models and Solid Models Reverse engineering: Acquiring					
	Point Data, Constructing 3D model and Applications. Virtual augmented reality: Requirement of					
	devices and technologies and applications Computer Aided Engineering: Application of FEA in					
	Engineering, the concept of discritization, steps in FEA and automatic mesh generation. Design for X:					
	Design for manufacture and design for assembly and other Facets of DFX					
5	Physical Prototyping and Rapid Manufacturing Computer Numerical Control:					
	Comparison between NC and conventional machines, features of CNC Machine Tool and					
	programming					
6	Computer Aided Process Planning:					
	Methodology, evaluation, types, CAD/CAM Integration and CAPP Features					
	Rapid Prototyping: dawn of slice age, benefits, applications, important issues and popular RP process					
	Rapid Tooling:					
	Indirect rapid tooling process					

7	Synergic Integration				
	Concurrent Engineering:				
	Benefits, methodology, integration and transactions				
	Product Data Management: Product data classifications, Process Management and benefits				
	Computer Integrated Manufacturing:				
	Components, barriers to CIM. Implementation, case study, development and research				
8	Rapid Prototyping and Rapid Tooling:				
	Methods, Stereo lithography, Fused-deposition modeling, Selective laser sintering, Laminated-object				
	manufacturing, Ballistic particle manufacturing, Solid base curing and Direct manufacturing and rapid				
	tooling				

LIST OF PRACTICALS

Sr.	Practical Content		
No.			
1	ANALYSIS OF PRODUCT DEVELOPMENT CYCLE IN TERMS OF SUSTAINABILTY IN THE		
	MARKET		
2	PART CODING USING COMPUTER AIDED PROCESS PLANNING FOR A GIVEN PRODUCT		
3	ANALYSIS OF A PRODUCT FOR DATA AQUIRING BASED ON REVERSE ENGINEERING		
4	ANALYSIS OF A PRODUCT FOR 3D MODELLING FOR REVERSE ENGINEERING		
5	ANALYSIS OF A PRODUCT BASED ON DFM		
6	ANALYSIS OF A PRODUCT BASED ON DFA		
7	ANALYSIS OF A PRODUCT BASED ON CONCURRENT ENGINEERING		
8	IMPLEMENTATION OF COMPUTER INTEGRATED MANUFACTURING FOR INDUSTRIAL		
	AUTOMATION		
9	PROGRAMMING OF CNC MACHINES USING G & M CODES		
10	CASE STUDY ON CAD/CAM INTERFACING		

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all units while conducting teaching & examination.
- Attendance is compulsory in lectures and Tutorial.
- Viva Voce will be conducted at the end of the semester of 30 Marks.
- One internal exam of 30 marks is conducted as a part of Mid semester evaluation.

STUDENTS LEARNING OUTCOMES:

At the end of the course

The students will gain an experience in the implementation of RPT for newer product development.

References Books:

- 1. Rapid Product Development- Synergic integration of time-compression technologies
- K. P. Karunakaran, V. P. Bapat, Sreenath Babu Akula P. D. Solanki Gaurav Gupta, V.R. Prasanth, Saket Anand, Arnab Sarkar and S. Venkatkrishnan
- 2. Manufacturing Processes for Engineering Materials -Serope Kalpakjion and Steven R. Schmid-Pearson Education.