FLEXIBLE MANUFACTURING SYSTEMS-EL2

Semester II (Production Engineering) SUB CODE: MEPR206-C Teaching Scheme (Credits and Hours)

Teaching Scheme				Total	Evaluation Scheme				Total	
T	т	D	Total	Credit	THEORY		ΙE	CIA	PR. / VIVO	Marks
L	1	P	Total		Hrs	Marks	Marks	Marks	Marks	
Hrs	Hrs	Hrs	Hrs							
2	0	0	2	2	3	70	30	0	20	120

LEARNING OBJECTIVES:

The objective of this course is

• To learn various concepts of GT,CAPP,MHS which helps in industrial automation

LESSON PLANNING

SR.NO	CHAPTER NO	DATE/WEEK	%WEIGTAGE
1	1,3	1 st 2 nd 3 rd	20
2	2	4 th 5 th 6 th	20
3	4,5	7 th 8 th 9 th	20
4	6,7	10 th 11 th 12 th	20
5	8	13 th 14 th 15 th	20

Total hours (Theory): 30, Total hours (Practical):00, Total hours: 30

DETAILED SYLLABUS

Chap	Topic
. No.	
1	Group Technology:
	Introduction, objectives, part families, algorithms and models for G.T Rank order clustering,
	Bond energy, mathematical model for machine – component cell formation.
2	Design and manufacturing attributes. Parts classification and coding, concept of composite job
	machine group, cell group tooling, design rationalization.
3	Computer Aided Process Planning:
	Generative and variant types, backward and forward approach, feature based and CAD based
	CAPP.
4	Introduction to FMS - concepts, advantages, components of FMS and their integration in the
	data processing systems, FMS scheduling - examples of FMS installations.
5	Distributed data processing in FMS:
	DBMS and their applications in CAD/CAM and FMS - distributed systems in FMS -
	Integration of CAD and CAM
6	Part programming in FMS, tool data base - Clamping devices and fixtures data base.
7	Material Handling systems:
	Conveyors - AGVs – industrial robots in material handling - AS/RS.
8	Interfacing of computers - machine tool controllers and handling systems: communications
	standards - programmable Logic Controllers (PLC's) - Interfacing - Computer aided Project
	planning – dynamic part scheduling.

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

• At the start of course, the course delivery pattern, prerequisite of the subject will be discussed

- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all units while conducting teaching & examination.
- Attendance is compulsory in lectures and Tutorial.
- Viva Voce will be conducted at the end of the semester of 30 Marks.
- One internal exam of 30 marks is conducted as a part of Mid semester evaluation.

STUDENTS LEARNING OUTCOMES:

At the end of the course

The students will gain an experience in the implementation of flexible systems for industrial automation

Reference Books:

- 1. Paul Ranky., "The design and operation of FMS", IFS publication, 1983.
- 2. Mikell P Groover, "Automation Production systems, Computer Integrated Manufacturing", Prentice Hall, 1987.
- 3. David J.Parrish, "Flexible Manufacturing" Butterworth-Heinemann, 1990.
- 4. Computer Aided Manufacture by Chien Chang and Richard A Wysk, Prentice HALL
- 5. G.T. in the engineering industry Burbridge.
- 6. CAD / CAM / CIM by P. Radhakrishnan, S. Subramanyan, New Age International.
- 7. Global Manufacturing, YORAM KORAMSr.