NON TRADITIONAL MACHINING PROCESS-EL2

Semester II (Production Engineering) SUB CODE: MEPR206-A Teaching Scheme (Credits and Hours)

Teaching Scheme			eme	Total	Evaluation Scheme					Total
Ţ	т	р	Total	Credit	Credit THEORY		ΙE	CIA	PR. / VIVO	Marks
L	1	P	Total		Hrs	Marks	Marks	Marks	Marks	
Hrs	Hrs	Hrs	Hrs							
2	0	0	2	2	3	70	30	0	20	120

LEARNING OBJECTIVES:

The objective of this course is

• To learn various concepts related to modern machining processes & their applications

LESSON PLANNING

SR.NO	CHAPTER NO	DATE/WEEK	%WEIGTAGE
1	1,8	1 st 2 nd 3 rd	20
2	2,3	4 th 5 th 6 th	20
3	4	7 th 8 th 9 th	20
4	5,6	10 th 11 th 12 th	20
5	7	13 th 14 th 15 th	20

Total hours (Theory): 30, Total hours (Practical):00, Total hours: 30

DETAILED SYLLABUS

DEIA	TAILED STLLABUS					
Chap	Topic					
. No.						
1	Introduction:					
	Needs for nontraditional machining processes, classification and comparative analysis					
2	Abrasive jet machining: Fundamental principle, application process parameters, MRR models.					
	Water jet machining: Fundamental principle, application process parameters					
3	Chemical machining: Principle of operation, etch ants and mask ants, photochemical process,					
	equipment, applications.					
4	Analysis of material removal:					
	Electrochemical machining: Process principle Dynamics of ECM Process, tool design,					
	applications.					
5	Ultrasonic machining: Physical principles Physical principles of USM, Process parameters,					
	Transducers types materials and design					
6	Horn design:					
	Shaws model of MRR, other applications of Ultrasonic machining					
7	Electrical discharge machining: Operating principles of EDM, Effects of Dielectric fluids,					
	Electrode materials ,power generators, process parameters and their effects, flashing, wire EDM					
	process, applications. Laser Beam Machining					
8	Lasing process:					
	Types of lasers (Gas and solid state), lasing mediums, laser material processing-cutting,					
	drilling, surface treatment, special applications.					

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all units while conducting teaching & examination.

- Attendance is compulsory in lectures and Tutorial
- Viva Voce will be conducted at the end of the semester of 30 Marks.
- One internal exam of 30 marks is conducted as a part of Mid semester evaluation.

STUDENTS LEARNING OUTCOMES:

At the end of the course

The students will gain an experience in the implementation of NTM concepts which are applied in the field of production

Reference Books:

- 1. Modern Machining Processes by P.C.Pandey & H.S. Shan, Tata McGraw Hill.
- 2. Advanced Machining Processes by Vijay K. Jain, Allied Publishers.
- 3. Non traditional Manufacturing Processes by G.F. Benedict, Marcel Dekker Inc., NY.
- 4. Advanced Methods of Machining by McGeough, Chapman and Hall, London.
- 5. New Technology by A. Bhattacharya, Institute of Engineers, India.
- 6. Material & Processes in Manufacturing by Paul De Garmo, J.T. Black and Ronald A. Kohser,
- 7. Advanced Machining Processes By Hassan Abdel-Gawad El-Hofy Tata McGraw Hill, ISBN 0071453342 / 9780071453349 PHI