FINITE ELEMENT TECHNIQUES -EL 1 Semester II (Production Engineering) SUB CODE: MEPR205-B Teaching Scheme (Credits and Hours)

	Teaching Scheme				Total	Total Evaluation Scheme			Total		
	T	т	D	Total	Credit	THEORY		ΙE	CIA	PR. / VIVO	Marks
	L	1	P	Total		Hrs	Marks	Marks	Marks	Marks	
]	Hrs	Hrs	Hrs	Hrs							
	3	0	2	5	4	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

• To learn various concepts related to FEM Analysis

LESSON PLANNING

SR.NO	CHAPTER NO	DATE/WEEK	%WEIGTAGE
1	1,2	1 st 2 nd 3 rd	20
2	3,4	4 th 5 th 6 th	20
3	5,6	7 th 8 th 9 th	20
4	7	10 th 11 th 12 th	20
5	8	13 th 14 th 15 th	20

Total hours (Theory): 45, Total hours (Practical): 30, Total hours: 75

DETAILED SYLLABUS

	AILED SYLLABUS				
Chap	Topic				
. No.					
1	Introduction: Introduction to Finite Element Method of solving field problems. Stress and Equilibrium. Boundary conditions. Strain-Displacement relations. Stress-strain relations. One Dimensional Problem: Finite element modeling. Local, natural and global coordinates and shape functions.				
2	Potential Energy approach :				
Н.	Assembly of Global stiffness matrix and load vector. Finite element equations, treatment of boundary conditions. Quadratic shape functions				
3	Analysis of trusses and frames:				
	Analysis of plane truss with number of unknowns not exceeding two at each node. Analysis of frames with two translations and a rotational degree of freedom at each node.				
4	Analysis of Beams:				
	Element stiffness matrix for two noded, two degrees of freedom per node for beam element				
5	Finite element modeling of two dimensional :				
	Stress analysis problems with constant strain triangles and treatment of boundary conditions.				
	Two dimensional four noded isoparametric elements and numerical integration.				
6	Finite element modeling of Axisymmentric:				
	Solids subjected of axisymmetric loading with triangular elements. Convergence				
	requirements and geometric isotropy				
7	Steady state heat transfer analysis:				
	One dimensional analysis of a fin and two dimensional conduction analysis of thin plate.				
	Time dependent field problems: Application to one dimensional heat flow in a rod. Dynamic				

	analysis: Formulation of finite element modeling of Eigen value problem for a stepped bar and beam. Evaluation of Eigen values and Eigen vectors. Analysis of a uniform shaft subjected to			
	torsion using Finite Element Analysis			
8	Finite element formulation of three dimensional:			
	Finite element formulation of three dimensional problems in stress analysis. Finite Element			
	formulation of an incompressible fluid. Potential flow problems Bending of elastic plates.			
	Introduction to non-linear problems and Finite Element analysis software			

LIST OF PRACTICALS

Sr. No.	Practical Content					
1	PROBLEM SOLVING METHODOLOGY BY FEM					
2	FINITE ELEMENT MODELINGOF ONE DIMENSIONAL PROBLEM					
3	PROBLEM SOLVING BY POTENTIAL ENERGY APPROACH					
4	FINITE ELEMENT MODELINGOF TWO DIMENSIONAL PROBLEM					
5	ANALYSIS OF FRAMES WITH TWO TRANSLATIONS					
6	ANALYSIS OF PLANE TRUSS WITH NUMBER OF UNKNOWNS NOT EXCEEDING TWO AT EACH NODE					
7	FINITE ELEMENT MODELINGOF TWO DIMENSIONAL FOUR NODED ISOPARAMETRIC ELEMENTS					
8	FINITE ELEMENT MODELING OF AXISYMMENTRIC LOADING WITH TRIANGULAR ELEMENTS					
9	ONE DIMENSIONAL ANALYSIS OF A FIN AND TWO DIMENSIONAL CONDUCTION ANALYSIS OF THIN PLATE					
10	FORMULATION OF FINITE ELEMENT MODELING OF EIGEN VALUE PROBLEM FOR A STEPPED BAR AND BEAM					
11	ANALYSIS OF A UNIFORM SHAFT SUBJECTED TO TORSION USING FINITE ELEMENT ANALYSIS					
12	FINITE ELEMENT MODELINGOF THREE DIMENSIONAL PROBLEMS IN STRESSANALYSIS					
13	FINITE ELEMENT FORMULATION OF AN INCOMPRESSIBLE FLUID					
14	POTENTIAL FLOW PROBLEMS BENDING OF ELASTIC PLATES					
15	FINITE ELEMENT ANALYSIS OF NON-LINEAR PROBLEMS AND FINITE ELEMENT ANALYSIS SOFTWARE					
INST	INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)					

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all units while conducting teaching & examination.
- Attendance is compulsory in lectures and Tutorial.
- Viva Voce will be conducted at the end of the semester of 30 Marks.
- One internal exam of 30 marks is conducted as a part of Mid semester evaluation.

STUDENTS LEARNING OUTCOMES:

At the end of the course

• The students will gain an insight to FEM which can be used in various analysis of real life problems

Reference Books:

- 1. Tirupathi R Chandraputla and Ashok. D. Belegundu, Introduction of Finite Element in Engineering, Prentice Hall of India, 1997.
- 2. Rao S.S., The Finite Element Methods in Engineering, Pergamon Press, 1989.
- 3. Segerland. L.J., Applied Finite Element Analysis, Wiley Publication, 1984.
- 4. Reddy J.N. An Introduction to Finite Element Methods, Mc Graw Hill Company, 1984.

