PRODUCT AUTOMATION & CNC TECHNOLOGY Semester I (Production Engineering) SUB CODE: MEPR104 Teaching Scheme (Credits and Hours)

Teaching Scheme				Total Evaluation Scheme				Total		
т	т	D	Total	Credit	THEORY		IE	CIA	PR. / VIVO	Marks
	1	Г	Total		Hrs	Marks	Marks	Marks	Marks	
Hrs	Hrs	Hrs	Hrs							
4	0	2	6	5	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- To learn various concepts related CNC Technology
- To have practical purview of manual part programming

LESSON PLANNING

SR.NO	CHAPTER NO	DATE/WEEK	%WEIGTAGE		
1	1,2	$1^{st} 2^{nd} 3^{rd}$	20		
2	3	$4^{th} 5^{th} 6^{th}$	20		
3	4,5	7 th 8 th 9 th	20		
4	6	$10^{\text{th}} 11^{\text{th}} 12^{\text{th}}$	20		
5	7	13 th 14 th 15 th	20		

Total hours (Theory): 60, Total hours (Practical):30, Total hours: 90

DETAILED SYLLABUS

Chap	Торіс			
. No.				
1	Concept and scope of industrial automation:			
	Automation strategies, devices, drives and control circuits in automation - Semi-automats,			
	Automats and transfer lines.			
2	Mechanical, electrical, hydraulic, pneumatic, electronic & hybrid automation system.			
	Comparative evaluation of automation system.			
3	Concepts, features, fundamentals, advantages and classification of NC systems, input media.			
	Design consideration of NC machine tools - machining centre – MCU functions.			
4	Controls and System devices:			
	Control loops of NC system - CNC Concepts, reference pulse and sampled data techniques -			
	microprocessor and CNC adaptive control – ACO and ACC systems.			
5	Graphical Numerical Control - part programming - design of post Processor			
6	Manual part programming:			
	Computer aided part programming – post processor, APT programming, Programming for CNC			
	turning center, Machining center and CNC EDM and wire cut EDM			
7	Computer Aided Process Planning: Introduction, Manual process planning vs. Computer aided			
	process planning, Basics of variant and generative process planning methods, Examples of			
	automated process planning systems.			
	Computer Integrated Manufacturing: Introduction, features and applications of CIM, key			
	elements, advantages and disadvantages of CIM			

LIST OF PRACTICALS

Sr. No.	Practical Content
1	PROGRAMMING USING G CODE & M CODE IN CNC MACHINES.
2	ANALYSIS OF VARIOUS COMPONENTS OF CNC MACHINES
3	ELECTRICAL AND MECHATRONICS COMPONENTS OF CNC MACHINES.
4	MANUAL PART PROGRAMMING AND EXPERIMENTAL CASE STUDY.
5	PART PROGRAMMING USING AUTOMATICALLY PROGRAMMED TOOLS (APT).
6	ANALYSIS OF ADAPTIVE CONTROL SYSTEM.
7	ANALYSIS OF MANUFACTURING AUTOMATION SYSTEM FOR A GIVEN APPLICATION
8	ANALYSIS OF INTERPOLATORS & CONTROLLER FOR VARIOUS CNC MACHINES
9	PART CODING OF A GIVEN COMPONENT USING CAPP
10	CASE STUDY CIM APPLICATION FOR INDUSTRIAL AUTOMATION

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all units while conducting teaching & examination.
- Attendance is compulsory in lectures and Tutorial.
- Viva Voce will be conducted at the end of the semester of 30 Marks.
- One internal exam of 30 marks is conducted as a part of Mid semester evaluation.

STUDENTS LEARNING OUTCOMES:

At the end of the course

• The students will gain an experience in the implementation of manual part programming as a part of industrial automation

Reference Books:

1. Scrope Kalpakjian, "Manufacturing processes for Engineering Materials", Addision Wesley, 1997.

- 2. Radhakrishnan, P., "Computer Numerical Control Machines", New Central Book Agencies, 1997.
- 3. Yoram Korem., "Computer control of Manufacturing systems", Mc Graw Hill, 1986.
- 4. Engineering automation by Solomo