M.E Semester: 2 Electrical Engineering (Electrical Power System) Subject Name: Power System Dynamics & Control

A. Course Objective:

- To study steady state and dynamic modeling of generator
- To study dynamic modeling of Excitation Systems, Prime movers etc.
- To study response of SMIB and multi-machine systems for different cases.

B. <u>Teaching / Examination Scheme</u>

SUBJECT		Teaching Scheme				Total	al Evaluation Scheme				Total	
		L	Т	Р	Total	Credit	TH	THEORY I		CIA	PR. /] ,, ,
CODE	NAME										VIVO	Marks
CODE		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
MEEPS202	Power System Dynamics & Control	4	0	2	6	5	3	70	30	20	30	150

C. Syllabus

SR	Unit	Topic	No. of	Weightage
No.	No	NOV	Hours	In Exam.
1	Unit:1	Modelling of Generator:	16	30%
	_ \	Classical Machine Description, Voltage Generation, Open-		
	. \	Circuit Voltage, Armature Reaction, Terminal Voltage, Power		
		Delivered by Generator, Synchronizing Generator to an Infinite		
. 3	ウェー	Bus, Synchronous Condenser, Role of Synchronous Machine	1.0	
- 5	41	Excitation in Controlling Reactive Power, The Park	9.1	
	NE	Transformation, Park's Voltage Equation, Park's Mechanical		
	177	Equation, Circuit Model, Instantaneous Power Output,		
	~~	Applications, Synchronous Operation, Steady-state Model,		
		Simplified Dynamic Model, Generator Connected to Infinite		
		Bus		
2	Unit: 2	Modelling of Excitaion System:	08	10%
		Excitation System, Excitation System Modeling, Excitation		
		System – Standard Block Diagram, System Representation by		
		State Equation, Prime Mover Control System.		
3	Unit: 3	Dynamics of a Synchronous Generator:	12	20%
		System Model, Synchronous Machine Model, Application of		
		Model, Calculation of Initial Conditions, System Simulation,		
		Consideration of Other Machine Model, Inclusion of SVC		

		Model.		
4	Unit: 4	Single machine system Modeling:	12	20%
		Small Signal Analysis with Block Diagram Representation,		
		Characteristic Equation (CE) and Application of Routh-		
		Hurwithz Criteion, Synchronizing and Damping Torque		
		Analysis, Small Signal Model : State Equation, Nonlinear		
		Oscillations – Hopf Bifurcation.		
5	Unit: 5	Multi-machine System:	12	20%
	Phone	Simplified system Model, Detailed models:		
	1	Case I, Detailed models:		
		Case II, Inclusion of Load and SVC dynamics, Modal Analysis		
		of Large Power Systems, Case Studies.		

D. Instructional Methods

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- Two internal exams may be conducted and average of the same may be converted to equivalent of 15 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of five marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

E. Students Learning Outcomes

• The student can identify problems related to multi-machine system and modeling of components of power system..

F. Recommended Study Materials

- Text & Reference Books:
- 1. Power Systems Analysis By Vijay Vittal, Bergen, Pearson Education
- 2. Power System Dynamics By K R Padiyar, B S Publications
- 3. Power System Stability & Control, By- P.Kundur, TataMcgraw hill
- 4. P. Sauer & M.A. Pai, 'Power System Dynamic & Stability', Prentice Hall Publication.

AVIDYALAYA

5. www.ee.iitb.ac.in/~peps/downloads.html

RADI SARYA VIS