M.E Semester: 1 Electrical Engineering (Electrical Power System) Subject Name: Advanced Power System Protection (Major Elective-I)

A. Course Objective:

• This course aims to upgrade the knowledge and skills of practicing engineers and technologies involved in the protection of power system.

B. <u>Teaching / Examination Scheme</u>

SUBJECT		Teaching Scheme				Total Evaluation Scheme					Total	
SUDJECT			Т	D	Total	Credit	THEORY		IE	CIA	PR. /	
CODE	NAME	L			Total		TILORI		IL	CIA	VIVO	Marks
CODE		Hrs	Hrs	Hrs	Hrs	137	Hrs	Marks	Marks	Marks	Marks	
MEEPS105-B	Advanced Power system Protection	4	0	2	6	5	3	70	30	20	30	150

C. Syllabus

SR	Unit	Topic	No. of	Weightage
No.	No		Hours	In Exam.
1	Unit: 1	Basic Elements of Digital Protection:	12	25%
		Application of Numerical relays for Interconnected power		
	- 1	system networks, Basic Components of a Digital Relay, Signal		
	. 1	Conditioning Subsystems, Transducers ,Surge Protection		
		Circuits, Analogue Filtering, Analogue Multiplexers,		
	12/	Conversion Subsystem, The Sampling Theorem, Signal		
- 5	10	Aliasing Error, Sample and Hold Circuit, Digital Multiplexing	7.1.	
	11	Digital-to-Analogue Conversion, Analogue-to-Digital		
	111	Conversion ,Digital		
	~~1	Relay Subsystem, Benefits of digital relays.		
2	Unit: 2	Relay coordination of Interconnected Power System:	10	20%
		Protection of an interconnected system, Link net structure,		
		Flowchart of primary/Backup relay pairs, Flowchart of Time		
		Multiplier Setting. Examples based on existing power system		
		network.		
3	Unit: 3	Reclosing and Synchronizing:	20	30%
		Introduction, Reclosing Precautions, Reclosing System		
		Consideration, One-Shot vs. Multiple-Shot Reclosing Relays,		
		Selective Reclosing, Deionizing Times for Three-Pole		
		Reclosing, Live-Line/Dead-Bus, Live-Bus/Dead-Line Control,		

		Instantaneous-Trip Lockout, Intermediate Lockout, Factors Governing Application of ReclosingConsiderations for Applications of Reclosing, Feeders with No-Fault-Power Back-Feed and Minimum Motor Load, Single Ties to Industrial Plants with LocalGeneration, Lines with Sources at Both Ends, Reclosing Relays andTheir Operation, Review of Breaker Operation, Single-Shot ReclosingRelays, Multishot Reclosing Relays, Synchronism Check, PhasingVoltage Synchronism		
		Check Characteristic, AngularSynchronism.		
4	Unit: 4	Concept of Different Relay Algorithms	18	25%
	1-	Introduction of different techniques, Least square based	-9	
	1 _	methods, Introduction, Integral LSQ fit, Power series LSQ fit,		
	1 /0	Differential equation based techniques, Basic principles, Digital		
		harmonic filtering by selected limits, Fourier analysis based		
	1	techniques, Introduction, The full cycle window algorithm, The		
		half cycle window algorithm.		

D. Instructional Methods

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- Two internal exams may be conducted and average of the same may be converted to equivalent of 15 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of five marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

E. Students Learning Outcomes

• The student can identify and appreciate concepts of different types of relaying algorithm and numerical relaying.

F. Recommended Study Materials

- Text & Reference Books:
- 1. Digital Protection- L P. Singh
- 2. Protective Relaying Theory and Applications, Walter A. Elmore, Marcel Dekker Inc; New York,
 - 3. "Protecting Relaying," Marcel Dekker Inc; New York, 1998- J. L. Blackburn
- 4. "Power System Relaying," John Wiley & Sons, NewYork, 1996- S. H. Horowitz and A. G. Phadke

10 YALAYA

5. Power System Protection, IEEE Press, Wiley Interscience, A John Wiley & Sons Inc; New York, 1999- P. M. Anderson

KADI SARVA VI