M.E Semester: 1 Electrical Engineering (Electrical Power System) Subject Name: Introduction to Optimization (Major Elective-I)

A. Course Objective:

- To review the traditional methods of optimization so that they can be implemented in power system operation.
- To study new technologies in optimization which would find application in load dispatch and optimal power flow problems.

B. <u>Teaching / Examination Scheme</u>

SUBJECT		Teaching Scheme				Total	I Evaluation Scheme					Total
		1	Т	D	Total	Credit	TH	EORY	IE	CIA	PR./	Marks
CODE	NAME	_			Total		THEORY		IC		VIVO	
CODE		Hrs	Hrs	Hrs	Hrs	Page 1	Hrs	Marks	Marks	Marks	Marks	
MEEPS-	Introduction to	4	0	2	4	-	2	70	30	20	30	150
105A	Optimization	4	U	2	6	3	3 70	70	30	20	30	130

C. <u>Detailed Syllabus</u>

SR No.	Unit No	Topic	No. of Hours	Weighatage In Exam
1	Unit:1	Concepts from geometry:	06	10%
		Line segments, Hyper planes and linear varieties, Convex set,		
		Neighborhoods, Polyhedra and polytopes, Exercises.		
2	Unit:	Unconstrained Optimization Methods:	20	30%
	2	Introduction, Basics of set-constrained and unconstrained	m.	
	120	optimization, conditions for local minimizers, Newton's method:	13	
- 5	10	Introduction, Analysis of Newton method; Line search method;	9.1	
	411	Gradient methods: Introduction, Method of steepest descent,		
	121	Analysis of gradient method, Convergence, Convergence rate,		
	~~~	Exercises		
3	Unit:	Conventional methods:	12	15%
	3	Linear Programming: Brief history of linear programming, Simple		
		examples of linear programs, two dimensional linear programs,		
		Convex polyhedral and linear programming; Quadratic		
		programming.		

4	Unit:	Constrained Optimization Methods:	12	25%
	4	Constrained optimization methods with Equality Constraints:		
		Introduction, Problem Formulation, Tangent and Normal Spaces,		
		Lagrange Condition, Second order conditions, minimizing		
		quadratics subject to linear constraints, Exercises. Constrained		
		Optimization Methods with Inequality Constraints: Karush Kuhn		
		Tucker Conditions, Second order Conditions, exercises.		
5	Unit:	Application of Optimization in Power System:	10	20%
	5	Optimal Power Flow using Newton method: Neglecting line		
		security constraints, considering line security constraints;		
	Phone	Economic Dispatch using Gradient method, Security constrained		
	1	economic dispatch using linear programming and quadratic	1	
		programming, Interior point method for VAR optimization.		

#### D. <u>Instructional Methods</u>

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- Two internal exams may be conducted and average of the same may be converted to equivalent of 15 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of five marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.

### E. Students Learning Outcomes

• Students would understand the application of algorithm in different areas of power system including optimal power flow, economic dispatch, load scheduling and sensitivity calculation..

## F. Recommended Study Materials

#### • Text & Reference Books:

- 1. An Introduction to Optimization: Edwin K. P. Chong and S. H. Zak, Wiley Publication.
- 2. Optimization of Power system Operation: Jizhong Zhu, Wiley Publication.
- 3. Computer Analysis Methods for Power systems: G.T. Heydt, Stars in a Circle Publication.

