DIGITAL IMAGE PROCESSING (Minor Elective-III)

Semester III (Computer Engineering) SUB CODE: MECE302-B

Teaching Scheme (Credits and Hours)

Teaching scheme				Total	Evaluation Scheme					
L	Т	Р	Total	Credit	Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	02	05	04	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- To study the image fundamentals and mathematical transforms necessary for image processing.
- To study the image enhancement techniques
- To study image compression procedures
- To study image segmentation and representation techniques
- To study image restoration procedures

OUTLINE OF THE COURSE:

Unit No	Topics
1.	Introduction
2.	Image Enhancement
3.	Image Restoration
4.	Color Image Processing
5.	Wavelets and Multi-resolution Processing
6.	Image Compression
7.	Morphological Image Processing

Total hours (Theory): 45

Total hours (Practical): 30

Total hours: 75

DETAILED SYLLABUS:

Sr. No	Торіс	Lecture Hours	Weight age
1	Introduction : Fundamentals, Applications; Image processing system components, Image sensing and acquisition, Sampling and quantization, Neighbors of pixel adjacency connectivity, regions and boundaries; Distance measures.	05	15
2	Image Enhancement: Frequency and Spatial Domain, Contrast Stretching, Histogram Equalization, Low pass and High pass filtering.	06	15
3	Image Restoration: Noise models, mean, order—statistics, adaptive filters. Band reject, Band pass and notch filters.	08	20
4	Color Image Processing: Color models; Pseudo color, Image processing; color transformation, segmentation.	08	20
5	Wavelets and Multi-resolution Processing: Image pyramids, sub band coding, Harr transform; multi resolution Expression, Wavelet transforms.	06	15
6	Image Compression: Fundamentals; models; error free and lossy compression; standards.	07	10
7	Morphological Image Processing: Boundary extraction; region filtering; connected component extraction; convex hull; Thinning; Thickening; skeletons; pruning; image segmentation.	05	05

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.

- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be able to check the correctness of algorithms using inductive proofs and loop invariants.
- Understand the basic concepts image processing.
- Image Restoration & Enhancement techniques.
- JPEG, MPEG understanding.
- Be able to learn colour image processing.
- Be able to learn segmentation.
- Familiar with morphological image processing.

REFERENCE BOOKS:

- 1. Digital Image Processing, Second Edition by Rafel C Gonzalez and Richard E. Woods, Pearson Education
- 2. Digital Image Processing by Bhabatosh Chanda and Dwijesh Majumder, PHI
- 3. Fundamentals of Digital Image Processing by Anil K Jain, PHI
- 4.Digital Image Processing Using Matlab, Rafel C. Gonzalez and Richard E. Woods, Pearson Education

REFERENCE LINKS / E-CONTENT:

1. http://www.imageprocessingplace.com/