EMBEDDED SYSTEMS (Minor Elective-III)

Semester III (Computer Engineering) SUB CODE: MECE302-A

Teaching Scheme (Credits and Hours):

Teaching scheme				Total	Evaluation Scheme					
L	T	P	Total	Credit	Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	02	05	04	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is to introduce students to the following concepts of

- Describe the Introductory and Fundamental issues of Real time systems.
- Understand the core theories underlying the development of practical real time and embedded systems
- Discuss the Important features of commercial Embedded Systems.
- Explain the network for Embedded Systems.
- To study different issue with Embedded Systems.

OUTLINE OF THE COURSE:

Unit No	Topics
1	Introduction:
2	General-purpose processors: Software
3	Standard single-purpose processors: Peripherals
4	Custom single-purpose processors: Hardware
5	Memories
6	Interfacing
7	Computation models
8	ARM Processor

Total hours (Theory): 45

Total hours (Practical): 30

Total hours: 75

DETAILED SYLLABUS:

Sr.	Topic	Lecture	Weight age
No		Hours	(%)
1	Introduction:	04	10
	Design challenge – optimizing design metrics, Embedded processor		
	technology, IC technology, Design technology.		
2	General-purpose processors: Software:	05	15
	Basic architecture, Pipelining, Programmer's view, Microcontrollers,		
	Selecting a microprocessor.		
3	Standard single-purpose processors: Peripherals:	05	15
	Timers, counters, and watchdog timers, UART, Pulse width		
	modulator, LCD controller, Keypad controller, Stepper motor		
	controller, Analog-digital converters, Real-time clocks		
4	Custom single-purpose processors: Hardware	05	15
	Combinational logic design, Sequential logic design, Custom single-		
	purpose processor design.		
5	Memories:	05	10
	Read-only memory – ROM, Read-write memory – RAM, Memory		
	hierarchy and cache.		
6	Interfacing:	08	10
	Timing diagrams, Hardware protocol basics, Arbitration.		
7	Computation models :	08	15
	Sequential program model, State machine model, Concurrent process		
	model, Other models.		
8	ARM Processor	05	10

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- 1. Understand how the Embedded Systems require most of the knowledge acquired during their study.
- 2. Develop a firm and enlightened grasp of concepts of different issues related with network and database.
- 3. Apply the ideas, the techniques, and the knowledge acquired for the purpose of Research on area of real time system.
- 4. Working skills in theory and application of Embedded Systems.

REFERENCE MATERIAL:

Books:

- 1. Embedded System Design: A Unified Hardware/Software Approach by Frank Vahid and Tony Givargis
- 2. Computer as Components principals of Embedded computing system Design by Wayne Wolf
- 3. David E Simon, "An embedded software primer", Pearson education Asia, 2001
- 4. Dreamteach Software team," Programming for Embedded Systems"
- 5. J.W. Valvano, "Embedded Microcomputor System: Real Time Interfacing"