OPTIMIZATION TECHNIQUES

Semester III (Computer Engineering) SUB CODE: MECE301

TEACHING SCHEME (Credits and Hours):

Teaching scheme				Total	Evaluation Scheme					
L	T	P	Total	Credit	Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	02	00	06	06	3	70	30	20	0	120

LEARNING OBJECTIVES:

The objective of this course is

- To enable students to learn and implement various optimization techniques
- To enable students to model real-world problems in optimization framework
- To enable students to apply various optimization models in computer-science context

OUTLINE OF THE COURSE:

Unit No	Topics
1	Mathematical preliminaries – linear algebra and multivariable calculus
2	Unconstrained and constrained optimization
3	Genetic algorithms
4	Linear programming
5	Non-linear programming

Total hours (Theory): 60

Total hours (Tutorial): 30

Total hours: 90

DETAILED SYLLABUS:

Sr.	Topic	Lecture	Weight age	
No		Hours	(%)	
1	Mathematical preliminaries	5	10	
	Linear algebra and matrices			
	 Vector space, eigen analysis 			
	Elements of probability theory			
	Elementary multivariable calculus			
2	Unconstrained and constrained optimization	15	20	
	One-dimensional search methods			
	Gradient-based methods			
	Conjugate direction and quasi-Newton methods			
3	Genetic Algorithms	10	10	
	Basics of genetic algorithms			
	• Analysis			
4	Linear Programming	15	25	
	Introduction to linear programming model			
	Simplex method			
	• Duality			
	Karmarkar's method			
5	Non-linear problems	15	35	
	Non-linear constrained optimization models			
	KKT conditions			
	Projection methods			

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be able to learn and implement various optimization techniques
- Be able to learn model real-world problems in optimization framework
- students will apply various optimization models in computer-science context

REFERENCE BOOKS:

- 1. Introduction to Optimization Edwin K P Chong, Stainslaw H Zak
- 2. Nonlinear programming Dimitry Bertsekas