MACHINE LEARNING (Major Elective-II)

Semester II (Computer Engineering) SUB CODE: MECE206-B

TEACHING SCHEME (Credits and Hours):

Teaching scheme				Total	Evaluation Scheme					
L	Т	Р	Total	Credit	Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- How can machine understand the visual world of humans
- Understand a range of machine learning algorithms along with their strengths and weaknesses
- Understand the basic theory underlying machine learning
- Read current research papers and understand the issues raised by current research
- Improving performance through experience, theory and practice of machine learning from variety of perspectives

OUTLINE OF THE COURSE:

Unit No	Topics
1	Introduction
2	Decision Tree Learning
3	Artificial Neural Networks
4	Bayesian Learning Methods
5	Computational Learning Theory
6	Instance Based Learning
7	Genetic Learning
8	Reinforcement Learning

Total hours (Theory): 60

Total hours (Practical): 30

Total hours: 90

DETAILED SYLLABUS

Sr. No	Торіс	Lecture Hours	Weight age (%)		
1	Introduction				
	• Well – Posed Learning System	5	5		
	• Designing a Learning System		-		
	• Perspective and Issues in Machine Learning				
2	Decision Tree Learning				
_	Decision Tree Representation				
	• The Basic Decision Tree Learning Algorithm	08	15		
	• Inductive Bias in Decision Tree Learning				
	 Issues in Decision Tree Learning 				
3	Artificial Neural Networks				
C	• Perceptions				
	 Multilaver Networks and Back propagation Algorithm 	08	15		
	An illustrative Example: Face Recognition				
	 Advanced Topics in Artificial Neural Networks 				
4	Bayesian Learning Methods				
•	Bayes Theorem and Concept Learning				
	 Bayes Optimal Classifier 				
	• Gibbs Algorithm	08	15		
	• Naïve Bayes Classifier				
	Bayesian Belief Networks				
	• The EM Algorithm				
5	Computational Learning Theory				
	Probably Learning	08	15		
	 Sample Complexity for Finite Hypothesis Spaces 	00	15		
	Sample Complexity for Infinite Hypothesis Spaces				
	The Mistake Bound Model for Learning				
6	Instance Based Learning				
	• Nearest Neighbor Learning	08	10		
	Locally Weighted Regression Dedial Desis Expertises				
	Kadial Basis Functions Case Based Beasoning				
7	• Case-Based Reasoning				
/	Motivation				
	Genetic Algorithms				
	Hypothesis Space Search	08	15		
	Genetic Programming				
	• Models of Evaluation and Learning				
	Parallelizing Genetic Algorithms				
8	Reinforcement Learning				
	• The Learning Task	07	10		
	• Q Learning, Nondeterministic Remarks and Actions				
	Temporal Difference Learning				

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be able to learn How can machine understand the visual world of humans
- Be able to Understand a range of machine learning algorithms along with their strengths and weaknesses
- Be able to Understand the basic theory underlying machine learning
- Be able to Read current research papers and understand the issues raised by current research
- Be able to Improving performance through experience, theory and practice of machine learning from variety of perspectives

REFERENCE BOOKS:

- 1. Machine learning by Tom Mitchell, TMH
- 2. Introduction to machine learning by Athem Ealpaydin, PHI
- 3. Computational Intelligence An Introcution By IMPAndries P. Engelbrecht, Wiley Publication