WEB AND TEXT MINING (Major Elective-II)

Semester II (Computer Engineering) SUB CODE: MECE206-A

TEACHING SCHEME (Credits and Hours):

Teaching scheme				Total	Evaluation Scheme					
L	T	P	Total	Credit	Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- To enable students to learn and implement various information retrieval models
- To enable students to understand and implement various text mining algorithms
- To enable students to understand and implement link analysis algorithms
- To enable students to understand and implement recommender systems

OUTLINE OF THE COURSE:

Unit No	Topics
1	Information Retrieval and Web Search
2	Web Crawling, index construction, index compression
3	Link analysis: HITS, PageRank
4	Text classification: naive bayes, vector space, support vector machines
5	Tex clustering: k-mean, Hierarchical
6	Recommender systems

Total hours (Theory): 60
Total hours (Practical): 30

Total hours: 90

DETAILED SYLLABUS:

Sr.	Topic	Lecture	Weight age
No		Hours	(%)
1	Information retrieval and web search	08	15
2	 Basic concepts of IR IR models: boolean, vector space, probabilistic Relevance feedback Text and webpage pre-processing 	10	15
2	 Web crawling, index construction Crawler construction Inverted index, posting lists Latent semantic analysis Index compression 	10	15
3	Link analysis: HITS PageRank Community Discovery	10	15
4	Text classification Naive-bayes Vector space models Topic models Support Vector Machines	16	25
5	 Text Clustering: k-means and other centroid-based schemes Hierarchical methods 	08	20

6	Recommender Systems	08	10
	Collaborative filtering: k-nn		
	Collaborative filtering: association rules		
	Collaborative filtering: matrix factorization		

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be able to learn and implement various information retrieval models
- Be able to understand and implement various text mining algorithms
- Be able to understand and implement link analysis algorithms
- Be able to understand and implement recommender systems

REFERENCE BOOKS:

- 1. Introduction to information retrieval Prabhakar Raghwan, Chris Manning
- 2. Speech and Natural language processing Daniel Jurafsky, Martin

LIST OF PRACTICALS:

Sr. No	Name of Experiment		
1	Implement a small-scale web information retrieval system		
2	Implement recommender systems		
3	Implement svm-based text-classification system		
4	Implement hierarchical agglomerative clustering for web-pages		