DISTRIBUTED DATABASES (Minor Elective-II)

Semester II (Computer Engineering) SUB CODE: MECE205-B

TEACHING SCHEME (Credits and Hours):

Teaching scheme			Total	Evaluation Scheme						
L	T	P	Total	Credit	Theo	ory	Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	02	05	04	3	70	30	20	30	150

LEARNING OBJECTIVES:

The educational Objectives of this Course are:

- To Introduce various Distributed Database Applications in real world scenario
- To be learning more about various Distributed Database Techniques
- Applying efficient Advanced Techniques to solve engineering problems

OUTLINE OF THE COURSE:

Unit No	Topics
1	Introduction
2	Architecture of distributed systems
3	Distributed Database Design
4	Concepts of Database links
5	Transparencies
6	Transaction processing
7	Semantic Data Control
8	Query processing and Query optimization strategies
9	Autonomy and Security in Distributed Databases
10	Current Trends in Distributed Database

Total hours (Theory): 45

Total hours (Practical): 30

Total hours: 75

DETAILED SYLLABUS:

Sr. No	Торіс	Lecture Hours	Weight age (%)
1	Chapter 1. Introduction	03	07
	Distributed Data Processing		
	• Promises of DDBs		
	Complicating Factors and Problem Areas. Classification of the Complete Areas.	0.5	00
2	Chapter 2. Architecture of distributed systems	05	08
	Architectural Models for Distributed DBMSs Homogeneous		
	HomogeneousHeterogeneous		
	■ Client/server		
	 Distributed Databases versus Replicated 		
	Databases		
3	Chapter 3. Distributed Database Design	06	15
	Alternative Design Strategies		
	 Distribution Design Issues 		
	 Fragmentation 		
	Allocation.		
4	Chapter 4. Concepts of Database links	05	10
	 Introduction 		
	 Types Database Links 		
	 Creating and Managing Database Links 		
	 Restrictions through Database Links 		
	Practical Scenarios and examples		
5	Chapter 5. Transparencies	03	10
	Database link name resolution		
	Schema object name resolution		
	• Location trans-RPC, creating location transparencies using		
	views, synonyms and procedures		
6	 Managing statement trans Chapter 6. Transaction processing 	05	15
0	 Concept and Properties of Transactions 		13
	 Remote and Distributed SQL Statements 		
	 Shared SQL for Remote and Distributed Statements 		
	Remote and Distributed Transactions		
	 72PC and 3PC Mechanisms and its types 		
7	Chapter 7. Semantic Data Control	04	05
	View Management		
	Data Security		
	Semantic Integrity control		

8	Chapter 8. Query processing and Query optimization strategies	04	10
	 Distributed Query Processing Methodology. 		
	 Distributed Query Optimization. 		
	 New query optimization techniques in distributed database. 		
	 Distributed Query Optimization problems and some solutions. 		
	 Advantages of query optimization techniques in distributed 		
	database.		
9	Chapter 9. Autonomy and Security in Distributed Databases	04	10
	Site Autonomy		
	DD Security		
	 Authentication trough Database Links 		
	 Authentication without Password 		
	 Supporting User Accounts and Roles 		
	 Centralized User and Privilege Management 		
	Data Encryption		
	Database Auditing		
10	Chapter 10. Current Trends in Distributed Database	06	10
	 Data Delivery Alternatives 		
	 Data Warehousing 		
	 World Wide Web 		
	 Push-based 		
	 Technologies 		
	Mobile Databases.		
	 Real Application Clusters(RAC) 		
	Cloud based databases		

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be able to Compare various Distributed Databases methods
- Be able to understand and identify the analytical characteristics of Distributed Databases algorithms.
- Employ algorithm to model engineering problems, when appropriate.

REFERENCE BOOKS:

- 1. Principles of Distributed Database Systems by M. TAMER OZSU, Patrick Valduriez, S. Sridhar (Pearson Publication)
- 2. Database system concepts', 6th Edition Abraham Silberschatz, Henry Korth, S, Sudarshan, (McGraw Hill International)
- 3. Distributed Databases by Stefano Ceri, Giuseppe Pelagatti(TMH)
- 4. Oracle Documentation

LIST OF PRACTICALS:

Sr			
No.			
1	Working with Database Link.	4	
	 Create a Database Link with hardcoded UserName and Password 		
	 Create a Database Link without UserName and Password. 		
	• Create a public database link with hardcoded user name and password.		
	 Create a Public Database Link without UserName and Password. 		
	 Write a command to close the database link. 		
	How can we drop database link		
2	Access any table from created Database Link to display all its content.	2	
3	Write commands to Insert, Update, Delete records using database link	2	
4	Create a view or synonym to hide distributed database complexity from your	2	
	user.		
5	Using database link develop a join query based on separate horizontal	4	
	partition on different machine.		
6	Develop a single table and try to update from multiple terminals and show the	4	
	concurrency control and lock details.		
7	Write a join query based on two tables and analyse the query using action	2	
	plan.		
8	Show the database activities using Audit Trails	4	
9	Create various Views using anyone of example of database and design	4	
	various Constraints.		
10	Using Commit and Rollback show Transaction ACID Property.	2	