
Page 7 of 35

SOFTWARE ARCHITECTURE

Semester II (Computer Engineering)
SUB CODE: MECE202

TEACHING SCHEME (Credits and Hours):

Teaching scheme Total

Credit

Evaluation Scheme

L T P Total Theory Mid Sem

Exam

CIA Pract. Total

Hrs Hrs Hrs Hrs Hrs Marks Marks Marks Marks Marks

04 00 02 06 05 3 70 30 20 30 150

LEARNING OBJECTIVES:

Complex software systems require abstraction and analysis at an architectural level of
abstraction. In this course we study, typical software system structures (architectural styles),
techniques for designing and implementing these structures, models for characterizing and
reasoning about architectures, and tools for architectural modeling. Role of architecture in
Software engineering; Enterprise Architectures, Zachman's Framework; Architectural Styles,
Design Patterns; Architecture Description Languages; Product-line architectures; Component
based development.

OUTLINE OF THE COURSE:

Unit No Topics

1 Introduction

2 Architectural Styles and Patterns

3 Models for characterizing and reasoning about architectures

4 Design of Software system structures

5 Modeling

6 Visualization and Architecture Description Languages

7 Implementation and Evaluation of the Architecture

8 Domain-Specific Software Architectures

9 Product-line architectures and Component based development

10 Enterprise Architectures

Page 8 of 35

Total hours (Theory): 60

Total hours (Practical): 30

Total hours: 90

DETAILED SYLLABUS:

Sr.
No

Topic Lecture
Hours

Weight
age
(%)

1 Introduction

The Architecture Business Cycle: Where do architectures
come from?
Software processes and the architecture business cycle;
What makes a “good” architecture?
What software architecture is and what it is not;
Other points of view; Architectural patterns, reference
models and reference architectures;
Importance of software architecture; Architectural structures
and views.
Software Architecture Elements: Components, Connectors
and Configuration

06 10

2 Architectural Styles and Patterns

Introduction
Architectural Patterns and Architectural styles
From mud to structure: Layers, Pipes and Filters,
Blackboard, Data abstraction and object-oriented
organization etc

08 15

3 Models for characterizing and reasoning about architectures

Formal Models
View and Viewpoints
Specification

06 05

4 Design of Software system structures

Design Strategy
The Attribute-Driven Design Method
The steps of ADD

08 15

Page 9 of 35

5 Modeling

Basic Concepts
Ambiguity, Accuracy and Precision
Specific Modeling Techniques: Generic, ADL’s etc

Tools for architectural modeling

ER/Studio Software Architect
IBM Rational Software Architect etc

06 05

6 Visualization and Architecture Description Languages

Basic Concepts
Issues in Visualization
Techniques: Textual Visualization, UML, ADL etc

ADL’s today
Capturing Architectural Information in an ADL
Application of ADL’s in system Development
Choosing an ADL
Example of ADL

06 15

7 Implementation and Evaluation of the Architecture

Architecture and its Implementation
Architecture Tradeoff Analysis Method
Participants, Outputs and Phases in ATAM

04 05

8 Domain-Specific Software Architectures
What are DSSA;
How DSSA help development;
Components of DSSA;
DSSA based Software development;

05 10

9 Product-line architectures

Creating Products
Role of a Product Line Architecture
Evaluating a Product Line Architecture

Component based development

Component Based Systems

06 10

Page 10 of 35

10 Enterprise Architectures

J2EE
.NET,
Model DrivenArchitecture
Zachman's Framework

05 10

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA)
Scheme)

At the start of course, the course delivery pattern, prerequisite of the subject will be
discussed.
Lectures will be conducted with the aid of multi-media projector, white/black board, OHP
etc.
Attendance is compulsory in lecture and laboratory which carries 10 marks in overall
evaluation.
One internal exam will be conducted as a part of internal theory evaluation.
Assignments based on the course content will be given to the students for each unit and
will be evaluated at regular interval evaluation.
Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in
the overall internal evaluation.
The course includes a laboratory, where students have an opportunity to build an
appreciation for the concepts being taught in lectures.
Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

Be familiar with software architecture, its foundation, principles, and elements.
Examine the useful abstractions and paradigms of system design as well as key notations
and tools. They will learn the introduction to software architecture that illustrates the
current state of the discipline and examines ways in which architectural issues can impact
software design.
Learn Software System Organization.
Be able to develop a repertoire of useful techniques that allows them to approach systems
from an architectural point of view.
Learn architectural techniques (e.g., architectural recovery, architectural styles, domain
specific software architectures) to design and implement a real-world software system.
Understand important concepts, methods, languages, and tools.
Be exposed to the concepts, principles, and state-of- the-art methods in software
architectures, including domain-specific software architectures (DSSA), architectural
styles, architecture description languages (ADL), software connectors, dynamism in
architectures, and architecture-based testing and analysis.

Page 11 of 35

Understand the explicit boundaries of the field and its relationship to other areas of
software engineering, specifically requirements, design (including object-oriented design
and related notations, such as UML), and implementation.
Learn the practical applicability of architecture research, specifically its relationship to
the work in software reuse and component interoperability platforms (such as CORBA,
JavaBeans, and COM/DCOM).
Be introduced to the state-of-the-art in software architecture research, future trends and
state-of-the-practice.

 REFERENCE BOOKS:

1. R. N. Taylor, N. Medvidovic, and E. M. Dashofy.
Software Architecture: Foundations, Theory, and Practice,
John Wiley & Sons, 2009.

2. Mary Shaw and David Garlan: Software Architecture- Perspectives on an Emerging
Discipline, Prentice-Hall of India, 2007.

3. Len Bass, Paul Clements, Rick Katzman, Ken Bass. Software Architecture in
Practice.

4. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Miachel Stal,
Douglas Schmidt. Pattern Oriented Sofware Architecture, Volumes 1 &2

5. George T. Heineman, William T. Councill. Component Based Software
Engineering.

6. Kurt Wallnau, Scott Hissam and Robert Seacord. Building Systems from
Commercial Components.

LIST OF PRACTICALS:

Sr. No Name of Experiment
1 Develop a simple application using CORBA (eg a Calculator).
2 Develop a simple application using Javabeans.
3 Develop a simple application using COM/DCOMs.
4 Provide an architectural breakdown for a simple software system.
5 Choose software architecture for a particular problem and identify strengths and

weaknesses of your own and other people’s solutions.
6 Provide an architectural description (using the discussed ADL) for the same software

system as in Practical 4.
7 Implement the architectural description of Practical 4.
8 Implement any one design pattern in Java, and analyze the costs and benefits of

applying the design pattern.
9 Develop a simple application in MTSA.
10 A group assignment that provides hand-on experience with an advanced software

architecture topic.

