
Page 2 of 35

DESIGN OF LANGUAGE PROCESSORS
Semester II (Computer Engineering)

SUB CODE: MECE201
Teaching Scheme (Credits and Hours):

Teaching scheme Total

Credit

Evaluation Scheme

L T P Total Theory Mid Sem

Exam

CIA Pract. Total

Hrs Hrs Hrs Hrs Hrs Marks Marks Marks Marks Marks

04 00 02 06 05 3 70 30 20 30 150

LEARNING OBJECTIVES:

The objective of this course is to introduce students to the following concepts underlying the
design and implementation of language processors.

Describe the steps and algorithms used by language translators.
Recognize the underlying formal models such as finite state automata, push-down
automata and their connection to language definition through regular expressions and
grammars.
Discuss the effectiveness of optimization.
Explain the impact of a separate compilation facility and the existence of program
libraries on the compilation process.
To study different language processors and their contribution in language processing
system.

OUTLINE OF THE COURSE:

Unit No Topics

1 Introduction to Language Processing
2 Language Processors
3 Lexical Analyzer
4 Syntax Analyzer
5 Semantic Analyzer
6 Run Time System
7 Intermediate Code Generation
8 Code Optimization
9 Code Generation
10 Introduction to Natural Language Processing

Total hours (Theory): 60

Total hours (Practical): 30

Total hours: 90

Page 3 of 35

DETAILED SYLLABUS:

Sr.
No

Topic Lecture
Hours

Weight age
(%)

Module I : Introduction
1 Introduction to Language Processing

Language Processing Activities
Fundamentals of Language Processing
Fundamentals of Language Specifications

05 10

2 Language Processors

Macro Processors
- Macro Definition and Call, Macro Expansion, Nested

Macro Calls, Advanced Macro Facilities in ‘C’
Assemblers
- Elements of Assembly Language Programming,

Assembly Scheme, single pass Assembler, Detailed
Design of two pass assembler

Loader and Linkers
- Relocation of Linking Concept, Design of Linker, Linker

for MS DOS, Linking for overlays, Design of absolute
loaders, Design of direct linking loaders

08 15

Module II : Language Analyzer
3 Lexical Analyzer

Lexical Analysis
Specification of tokens
Recognition of tokens
Regular Expression
Finite automata
NFA
Lex Implementation

08 15

4 Syntax Analyzer

Syntax analysis
Types of Grammar
CFG, CFL, PDA & Turing Machine
Top down parsing
Bottom up parsing
YACC

12 15

Page 4 of 35

5 Semantic Analyzer

Syntax directed Translation
L- attributed and S-attributed definitions with their
implementation
Type checking

06 10

6 Run Time System:
storage organization
activation tree
activation record
parameter passing

02 05

Module III : Code Generation & Optimization
7 Intermediate Code Generation

Run-Time Environment: issues and design
Intermediate Languages
Implementation of Three Address Code

05 10

8 Code Optimization

Optimization of basic blocks
Loops in flow graphs
Global data flow analysis
 Code generation

05 10

9 Code Generation

Issues in the Design of a Code Generator
The Target Machine
Run-Time Storage Management
Basic Blocks and Flow Graphs
Next-Use Information
A Simple Code Generator
Register Allocation and Assignment
The DAG Representation of Basic Blocks
Peephole Optimization
Generating Code from DAGs
Dynamic Programming Code-Generation Algorithm

04 05

Module IV : Natural Language Processing
10 Introduction to Natural Language Processing

NLP tasks in syntax, semantics, and pragmatics
Applications such as information extraction, question

05 05

Page 5 of 35

answering, and machine translation
The problem of ambiguity
Linguistics Essentials
Language Models

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA)
Scheme)

At the start of course, the course delivery pattern, prerequisite of the subject will be
discussed.
Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
Attendance is compulsory in lecture and laboratory which carries 10 marks in overall
evaluation.
One internal exam will be conducted as a part of internal theory evaluation.
Assignments based on the course content will be given to the students for each unit and
will be evaluated at regular interval evaluation.
Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in
the overall internal evaluation.
The course includes a laboratory, where students have an opportunity to build an
appreciation for the concepts being taught in lectures.
Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:
1. Understand how the design of a compiler requires most of the knowledge acquired during

their study.
2. Develop a firm and enlightened grasp of concepts learned earlier in their study like higher

level programming, assemblers, automata theory, and formal languages, languages,
languages specifications, data structure and algorithms, operating systems.

3. Apply the ideas, the techniques, and the knowledge acquired for the purpose of other
language processor design.

4. Working skills in theory and application of finite state machines, recursive descent,
production rules, parsing, and language semantics.

5. Know about the powerful compiler generation tools, which are useful to the other non-
compiler applications

REFERENCE MATERIAL:
Books:

1. Compilers, Principles, Techniques and Tools by A.V. Aho, R. Sethi and J.D.Ullman,
Pearson

2. Advanced compiler Design Implementation by Steven S. Muchnick
3. The Compiler Design handbook: Optimization and Machine Code Generation by Y. N.

Shrikant and Priti Shankar, Second Edition
4. System Programming and Operating Systems by D M Dhamdhere, TMH
5. Systems Programming by John J. Donovan

Page 6 of 35

6. Charles N. Fischer, Richard J. leBlanc, Jr.- Crafting a Compiler with C, Pearson
Education, 2008.

Articles:
1. Joshi A K, “Natural Languagae Processing“, Journal of Science, 253(5025):1242-1249,

1991
2. Gobinda G. Chowdhury, “Natural Languagae Processing“, Annual review of Computer

Scienece and Technology, 37(1): 51-89, 2003

3. http://nptel.iitm.ac.in/courses.php?disciplineId=106

http://symbolaris.com/course/Compilers/waitegoos.pdf

LIST OF PRACTICALS:
Sr. No Name of Experiment

1 Implement a C program to identify keywords and identifiers using finite automata.

2 Implement a C program to find FIRST and FOLLOW set of given grammar.
3 Implement a C program to eliminate Left Recursion from given grammar.
4 Implement a C program to perform Left factoring in given grammar.
5 Implement any one shift reduce parser.

Lex Programs
1 Write a lex program to identify numbers, words and other characters and generate

tokens for each.
2 Write a lex program to count the number of characters, words and lines in the given

input.
3 Write a lex program to remove empty lines.
4 Write a lex program to display the comments from given input file.
5 Write a lex program to identify all the lexemes from input file that follow the given RE.

Provide the RE as command line argument.
6 Generate a lexer for C program.

Yacc programs
1 Write a Yacc program for desktop calculator with ambiguous grammar.
2 Write a Yacc program for calculator with unambiguous grammar.
3 Write a Yacc program to convert infix into postfix expression.

