ADVANCED COMPUTER GRAPHICS (Major Elective – I) Semester I (Computer Engineering) SUB CODE: MECE106-C

Teaching Scheme (Credits and Hours)

Teaching scheme			Total	Evaluation Scheme						
L	Т	Р	Total	Credit	Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- To Introduce various Graphics Applications in real world scenario
- To be familiar with image fundamentals and animations
- To be learn more about 2D, 3D and Curve applications
- Applying efficient graphics technique to solve engineering problems

OUTLINE OF THE COURSE:

Unit No	Topics		
1	Review of Two Dimensional Graphics		
2	Three Dimensions		
3	Curves and Fractals		
4	Solid Modeling		
5	Achromatic and Color Light		
6	Hidden Line and Surfaces		
7	Illumination and Shading		
8	Image Based Rendering		
9	Animation		
10	Graphics Hardware		

Total hours (Theory): 60

Total hours (Practical): 30

Total hours: 90

DETAILED SYLLABUS

Sr.	Торіс	Lecture	Weight age
NO		Hours	(%)
1	Review of two-dimensional graphics	00	05
	Transformations		
	Windowing		
	Clipping	0.6	1.7
2	Three Dimensions	06	15
	3D geometry, primitives and transformations.		
	Rotation about an arbitrary axis		
	Parallel and perspective projection		
	Viewing parameters		
	3D clipping and viewing transformation		
3	Curves and Fractals	08	15
	Polygon Meshes		
	Parametric Cubic curves: B-spline, Bezier, Hermite.		
	Parametric Bicubic Surfaces		
	Quadric surfaces		
	Fractals: fractal lines and surfaces Applications		
4	Solid Modeling	08	15
	Representing solids		
	Regularized Boolean Set Operations		
	Primitive Instancing		
	Sweep and Boundary Representations		
	Spatial-partitioning Representations		
	Constructive Solid Geometry		
	User Interface for Solid Modeling		
5	Achromatic and Colored Light	08	15
	Achromatic light, Gamma correction, Halftone		
	approximation, Chromatic Color		
	CIE chromaticity diagram, Color models for Raster Graphics.		
	Using Color in Computer Graphics		
6	Hidden Lines and Surfaces	06	10
	Algorithms for Visible-Line and Surface determination: z-		
	buffer, List priority, Scan line, Area Subdivision, Ray Tracing		
7	Illumination and Shading	08	10
	Surface detail, shadows and Transparency		
	Inter object Reflections		
	Illumination Models		
	Extended Light Sources		
	Recursive Ray Tracing		
8	Image based Rendering	06	05
	Introduction		
	comparison with geometry based rendering		

	applications		
9	Animation	02	05
	Introduction		
	morphing		
	character animation and facial animation		
10	Graphics Hardware	02	05
	Special-purpose computer graphics processors and		
	accelerators		

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be able to Compare various graphics algorithm used in 2D and 3D
- Be able to understand fundamentals of graphics used in various real life applications.
- Be able to understand and identify the performance characteristics of graphics algorithms. Employ algorithm to model engineering problems, when appropriate.

REFERENCE BOOKS:

- 6. Computer Graphics: principals and practice Foley, vanDam, Feiner Hughes Addision Wesley
- 7. Mathematical Elements of Graphics Roges Tata McGrow Hill
- 8. Computer Graphics Donald Hearn and M.Pauline Baker Prentice Hall India
- 9. Procedural Elements-Computer Graphics, David Rogers, TMH
- 10. Principals of Computer graphics, Shalini Govil-pal, springer

LIST OF PRACTICALS

Sr. No	Name of Experiment
1	To perform open GL program for Bezier Curve.
2	To perform Bezier curve with c^0 and c^1 continuity.
3	To Draw cube with or without back face culling.
4	To perform Hermite Curve.
5	To perform program for diffuse illumination.
6	To perform program for sphere with Back face culling.
7	To perform program for Ambient and diffuse light source.
8	To perform program for ambient & specular & diffuse light
	source.
9	To perform program for Diffuse only light source.
10	To perform Z buffer visible surface Algorithm
11	To perform open GL program for Bezier Curve.