SOFT COMPUTING (Major Elective – I) Semester I (Computer Engineering) SUB CODE: MECE106-B

Teaching Scheme (Credits and Hours)

Teaching scheme			Total	Evaluation Scheme						
L	Т	Р	Total	Credit	edit Theory		Mid Sem	CIA	Pract.	Total
							Exam			
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is to learn:

- The general concepts and techniques in soft computing.
- How to apply some of the techniques to practical problems.

OUTLINE OF THE COURSE:

Unit No	Topics
1	Aims of Soft Computing
2	Foundations of Fuzzy Sets Theory
3	Fuzzy Logic
4	Artificial Neural Networks
5	Probabilistic Reasoning
6	Genetic Algorithms
7	Neuro-Fuzzy Technology
8	Combination of Genetic Algorithms with Neural Networks
9	Combination of Genetic Algorithms and Fuzzy Logic
10	Neuro-Fuzzy-Genetic Approach
11	Other Combinations of the Constituents of Soft Computing
12	Soft Computing Applications

Total hours (Theory): 60 Total hours (Practical): 30 Total hours: 90

DETAILED SYLLABUS:

Sr. No	Торіс	Lecture Hours	Weight age
1	Aims of Soft Computing	06	05
	Soft Computing (SC) as Key Methodology for Designing of Intelligent Systems Structure and Constituents of Soft Computing Comparative Characteristics of the Constituents of SC		
2	Foundations of Fuggy Sate Theory	06	15
	Basic Concepts and Properties of Fuzzy Sets Basic types of fuzzy sets Properties of fuzzy sets Representations and constructing of fuzzy sets Extension principle for fuzzy sets Operations on fuzzy sets Probability and fuzziness Fuzzy Sets and possibility theory Elements of Fuzzy Mathematics Fuzzy topology and fuzzy algebra Fuzzy geometry Fuzzy arithmetic Fuzzy analysis Fuzzy differential equiations Fuzzy Relations Fuzzy relations. Linguistic variables		
	Fuzzy relational equations		
3	Fuzzy Logic Brief Overview of Classical Logic Elements of Fuzzy Logic Semantic Analysis of Different Fuzzy Logic Fuzzy Inference Rules and Approximate Reasoning Formalization of the Fuzzy Conditional Inference for a Different Type of Conditional Propositions Experimental Selecting Appropriate Fuzzy Implications Application Fuzzy Modelling Fuzzy Decision Making Pattern Analysis and Classification Fuzzy Control Systems Fuzzy Information Processing Fuzzy information systems Fuzzy data base and fuzzy operations in fuzzy database management systems Fuzzy information retrieval Fuzzy Robotics Fuzzy Robotics	08	15

	Optimal path planning for a mobile intelligence robot with		
	fuzzy resolution principle		
4	Artificial Neural Networks	08	15
	Models of Neuron Basic Architectures of Neural Networks		
	Feed Forward Neural Networks		
	Recurrent Neural Networks		
	Time-Delay Neural Networks		
	Padial Basis Function Neural Networks		
	Cerebellar Model Articulation Controller		
	Adaptive Resonance Theory (ART) NN		
	Associative Neural Memory Models		
	Supervised Learning of Neural Networks		
	Percentron learning algorithm		
	Widrow-Hoff learning rule		
	Delta rule		
	Error backpropagation algorithm		
	Recurrent hackpropagation		
	Unsupervised Learning		
	Hebbian learning		
	Competitive learning		
	Kohonen's learning		
	Reinforcement Learning		
	Applications		
	Neural identification and control		
	Adaptive predictive neural control system for industrial robot		
	RioMedical		
	Pattern Recognition		
5	Probabilistic Reasoning	08	15
	Bayesian Approach		
	Dempster-Shafer Theory of Belief		
	Upper and Lower Prevision		
	Mixed Formalism Based Reasoning		
	References		
6	Genetic Algorithms	06	10
			10
	Genetic Algorithms. Main Operators		
	Genetic Algorithm Based Optimization		
	Genetic Algorithm with Group Principle		
	Group Genetic Algorithms with Directed Mutation		
	Comparison of Conventional and Genetic Search Algorithms		
	Applications		
	Genetic algorithms based identification and control		
7	Neuro-Fuzzy Technology	08	10
	Fuzzy Neural Networks and Their Learning		
	Fuzzy neural networks and Then Leanning		
	Conorol logrning algorithm for fuzzy neurol network		
	Learning of E NN by applying a system		
	Learning of r ININ by apprying a-cuts		

		T	
	Architecture of Neuro-Fuzzy Systems		
	Generation of Fuzzy Rules and Membership Functions		
	Fuzzification and Defuzzification in Neuro-Fuzzy Systems		
	Neuro-Fuzzy Identification		
	Neuro-Fuzzy Control		
	Neuro-Fuzzy Navigation System for Intelligent Robot		
	Handwritten Image Recognition by Using Neuro-Fuzzy Approach		
8	Combination of Genetic Algorithms with Neural Networks	06	05
	Neural Networks and Genetic Algorithms		
	Use of Genetic Algorithms for Neural Network Learning		
9	Combination of Genetic Algorithms and Fuzzy Logic	02	05
	GA-Based Method for Defining of Relational Matrix and Membershin		
	Functions		
	Design of Fuzzy Knowledge Base by Using Genetic Algorithms		
	Fuzzy Genetic Algorithms		
	Use of fuzzy approach in genetic algorithms fortuning the search		
	directions		
	Euzzy logic based genetic algorithms		
	Fuzzy Constin Modeling		
	Ganatia Algorithms Pagad Euggy Pagragaian Analysis		
	Color Descention with Using Every Logic and Constin Algorithm		
10	N E C ti A l	02	0.5
10	Neuro-Fuzzy-Genetic Approach	02	05
	Genetic Algorithms in Learning of Fuzzy Neural Networks		
	Genetic Algorithm Based Euzzy Neural Networks Control System		
	Genetic Algorithm Based Fuzzy Neural Networks Control System		
11	Other Combinations of the Constituents of Soft Computing		
	Fuzzy Expert Systems Using Bayes-Shortliffe Approach		
	Fuzzy Chaos Based Tuning of Fuzzy Controller		
	Soft Computing Based Multi-Module Forecasting Time Series System		
12	Soft Computing Applications		
	Soft Computing based Distributed Intelligent Systems		
	Soft Computing in Computer vision and Image Processing		
	Soft Computing in Network Security		
	Soft Computing in Information Dataional		
	Soft Computing in Information Retrieval		
	Soft Computing in Agriculture		

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.

- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student should be able to:

- Identify and describe soft computing techniques and their roles in building intelligent machines
- Identify and describe soft computing techniques and their roles in building intelligent machines
- Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems
- Apply neural networks to pattern classification and regression problems
- Apply genetic algorithms to combinatorial optimization problems
- Effectively use existing software tools to solve real problems using a soft computing approach
- Evaluate and compare solutions by various soft computing approaches for a given problem

REFERENCE BOOKS:

- 1. Soft Computing and its applications, R.A.Aliev, World Scientific Publishing Co. Pte. Ltd.
- 2. Principles of Soft Computing, S.N.Sivanandam, S.N.Deepa, Wiley India.
- 3. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications, S. Rajasekaran, G. A. Vijayalakshmi Pai, PHI
- 4. Fuzzy logic with Engineering Applications, Timothy J Ross, McGrawHill ,New York.
- 5. Neural Networks a Comprehensive foundation, S.Haykins, Pearson Education.
- 6. D.E.Goldberg, Genetic Algorithms in Search Optimisation and Machine Learning, Pearson Education.
- 7. Neural Networks, Fuzzy Logic and Genetic Algorithms:Synthesis & Applications, S. Rajasekaran, G. A. Vijayalakshami, PHI.
- 8. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI
- 9. Compensatory Genetic Fuzzy Neural Networks and Their Applications, Yanqing Zhang and Abraham Kandel, World Scientific.
- 10. Recent Literature.

LIST OF PRACTICALS:

Sr.	Title			
No.				
FUZZY LOGIC				
1	WRITE A MATLAB PROGRAM TO IMPLEMENT FUZZY SET OPERATION			
	AND PROPERTIES.			
2	WRITE A PROGRAM TO IMPLEMENT COMPOSITION OF FUZZY AND CRISP			
	RELATIONS.			
3	WAP TO PERFORM MAX-MIN COMPOSITION OF TWO MATRICES			
	OBTAINED FROM CARTESIAN PRODUCT.			
4	WAP TO VERIFY THE VARIOUS LAWS ASSOCIATED WITH FUZZY SET.			
ARTIFICIAL NEURAL NETWORK				
5	WAP TO IMPLEMENT AND FUNCTION USING ADALINE WITH BIPOLAR			
	INPUTS AND OUTPUTS.			
6	WAP TO IMPLEMENT AND FUNCTION USING MADALINE WITH BIPOLAR			
	INPUTS AND OUTPUTS.			
7	WRITE A MATLAB PROGRAM TO IMPLEMENT DISCRETE HOPFIELD			
	NETWORK AND TEST FOR INPUT PATTERN.			
8	WRITE A MATLAB PROGRAM TO IMPLEMENT FULL COUNTER			
	PROPAGATION NETWORK FOR A GIVEN INPUT PATTERN.			
9	WRITE A MATLAB PROGRAM TO IMPLEMENT BACK PROPAGATION			
	NETWORK FOR A GIVEN INPUT PATTERN.			
10	WAP TO IMPLEMENT ART 1 NETWORK FOR CLUSTERING INPUT VECTORS			
	WITH VIGILANCE PARAMETER.			
GENET	IC ALGORITHM			
11	WRITE A MATLAB PROGRAM FOR MAXIMIZING F(X)=X2 USING GA,			
	WHERE X IS RANGES FROM 0 TO 31. PERFORM ONLY 5 ITERATIONS.			