
Page 5 of 37

 ADVANCED ALGORITHMS AND ANALYSIS

Semester I (Computer Engineering)
SUB CODE: MECE102

Teaching Scheme (Credits and Hours)

Teaching scheme Total

Credit

Evaluation Scheme

L T P Total Theory Mid Sem

Exam

CIA Pract. Total

Hrs Hrs Hrs Hrs Hrs Marks Marks Marks Marks Marks

04 00 02 06 05 3 70 30 20 30 150

LEARNING OBJECTIVES:

The objective of this course is

 To Introduce various designing techniques and methods for algorithms
 Performance analysis of Algorithms using asymptotic and empirical approaches
 Demonstrate a familiarity with major algorithms and data structures.
 To give clear idea on algorithmic design paradigms like Divide-and-Conquer, Dynamic

Programming, Greedy, Branch and Bound etc.
 Applying efficient algorithms in engineering problems

OUTLINE OF THE COURSE:

Unit No Topics

1 Fundamentals of Algorithms

2 Analysis and Design Techniques

3 Advanced Data Structures

4 Graph Algorithms

5 Algorithms for parallel computers

6 Approximation algorithms

7 Complexity Theory

Total hours (Theory): 60

Total hours (Practical): 30

Total hours: 90

Page 6 of 37

DETAILED SYLLABUS:

Sr.
No

Topic Lecture
Hours

Weight
age (%)

Module I : Basics of Algorithms
1 Fundamental of Algorithms

 Analysis of Algorithms (algorithm definitions, Orders of
Magnitude, Growth rates, Arithmetic and geometric series,
harmonic numbers, sets, relations, functions, combinations)

 Recurrence Relations
 Amortized analysis
 Sorting algorithms and Analysis (Compare-exchange, divide-

conquer, linear time, tree sorting)
 Applications of sorting and searching

08 15

2 Analysis and Design Techniques

 Dynamic programming
 Greedy algorithms

07 5

3 Data Structures:
 Introduction of basic data structures like stack, queue, linked-

list, binary tree, binary search tree
 Red-Black trees
 Augmenting data structures

Advanced Data Structures:

 B-trees
 Binomial heaps
 Fibonacci heaps

10 15

Module II : Advanced Algorithms and Applications
4 Graph Algorithms:

 Elementary graph algorithms
 Minimum spanning trees
 Graph coloring
 Single source shortest paths
 All- pairs shortest paths
 Maximum flow

10 15

5 Algorithms for parallel computers
 Analysis of parallel algorithms
 Sorting networks (Bitonic, odd-even merge, butterfly)
 Parallel sorting algorithms
 Parallel searching algorithms

10 20

Page 7 of 37

 Prefix sum computations
 Matrix operations

6 Approximation algorithms

 The vertex-cover problem
 The traveling-salesman problem
 The set-covering problem
 The subset-sum problem

10 20

7 Complexity Theory
 NP-completeness - Complexity Classes
 NP-Hard and NP-Complete problems

05 10

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA)
Scheme)

 At the start of course, the course delivery pattern, prerequisite of the subject will be
discussed.

 Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
 Attendance is compulsory in lecture and laboratory which carries 10 marks in overall

evaluation.
 One internal exam will be conducted as a part of internal theory evaluation.
 Assignments based on the course content will be given to the students for each unit and

will be evaluated at regular interval evaluation.
 Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in

the overall internal evaluation.
 The course includes a laboratory, where students have an opportunity to build an

appreciation for the concepts being taught in lectures.
 Experiments shall be performed in the laboratory related to course contents.

 STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

 Be able to check the correctness of algorithms using inductive proofs and loop invariants.
 Be able to compare functions using asymptotic analysis and describe the relative merits

of worst-, average-, and best-case analysis.
 Be able to solve recurrences using the master, the iteration/recursion tree, and the

substitution method.
 Become familiar with a variety of sorting algorithms and their performance

characteristics (eg, running time, stability, space usage) and be able to choose the best
one under a variety of requirements.

 Be able to understand and identify the performance characteristics of fundamental
algorithms and data structures and be able to trace their operations for problems such as
sorting, searching, selection, operations on numbers, polynomials and matrices, and
graphs.

Page 8 of 37

 Explain the major graph algorithms and their analyses. Employ graphs to model
engineering problems, when appropriate. Synthesize new graph algorithms and
algorithms that employ graph computations as key components, and analyze them.

 Be able to use the design techniques introduced i.e. dynamic programming, greedy
algorithm etc. to design algorithms for more complex problems and analyze their
performance.

 Become familiar with the major graph algorithms and their analyses. Employ graphs to
model engineering problems, when appropriate.

 Demonstrate a familiarity with applied algorithmic settings - such as computational
geometry, operations research, security and cryptography, parallel and distributed
computing, operating systems, and computer architecture - by reciting several algorithms
of importance to different fields.

 REFERENCE BOOKS:

1. Introduction to Algorithms by Coreman MIT Press
2. Design and Analysis of Computer Algorithms by Aho,Hopcroft and Ullman ,Pearson
3. The Algorithm Design Manual By Steve s. Skiena
4. Fundamental of Algorithms- Theory and Practice by Gilles Brassard and Paul Bratley
5. Data Structure and Algorithm by Hari Mohan Pandey, Laxmi Publication

LIST OF PRACTICALS:
Sr. No Name of Experiment

1 Find out Big - Oh and Big Omega of the function. Take necessary data like degree of

2 Implement insertion sort, bubble sort, merge sort, shell sort and quick sort.
3 Implement Heap Sort, Radix Sort, Count Sort
4 Implement AVL Tree
5 Implement B Tree and R tree
6 Implement following problem with Greedy Algorithm.

 Making a Change
 Fractional Knap Sack
 Traveling salesman Problem (Take 10 city for solving problem).

7 Implement the following problem with Dynamic Programming.
 Making Change
 Knap Sack
 Longest Common Subsequence problem
 Chain Matrix multiplication Problem

8 Implement following problem with Branch and Bound Technique
 Task Assignment Problem
 Subset sum Problem
 Hamiltonian Circuit

9 Implement Minimum Spanning Tree using Prim and Kruskal algorithms
10 Implement following problem with Back Tracking Technique

 Eight Queen Problem

