M.E Semester: 1 M.E Mechanical (Automobile Engineering) Subject Name: Combustion Engineering (Elective-I) MEA105A

A. Course Objective

- To present a problem oriented in depth knowledge of Combustion Engineering
- To address the underlying concepts and methods behind Combustion Engineering

B. Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total	Evaluation Sch <mark>e</mark> me				Total	
			Т	Р	Total	Credit	TH	EORY	IE	CIA	PR. / VIVO	Marks
CODE	NAME	Hrs	Hrs	Hrs	Hrs	100	Hrs	Marks	Marks	Marks	Marks	
MEA105A	Combustion Engineering	3	0	0	3	3	3	70	30	20	0	120

C. <u>Detailed Syllabus</u>

- Combustion thermodynamics; Stoichiometry; first and second laws of thermodynamics applied to combustion; Ignition and combustion in SI engine; Flame travel; turbulent flame propagation; flame stabilization; vaporization; Review of detonation and Diesel knock; effect of various factors, Combustion chambers for SI engines
- 2. Combustion in CI engine; Ignition delay and diesel knock; Excess air supply and air motion; Combustion chamber for CI engines- Construction and Performance aspects; M-combustion chamber; latest combustion chamber and technology
- 3. Fundamentals of combustion kinetics' Combustion products in equilibrium; rate of reactions; chain reactions; opposing reactions; consecutive reactions ,competitive reactions; Conservation equation for multi component reacting systems.
- 4. Combustion of liquid fuel droplet; fuel atomization; types of injectors; spray formation and characteristics; Oil fired furnace combustion; gas turbine spray combustion; direct injection engine combustion; detonation of liquid gaseous mixture.
- 5. Combustion of solid fuels; Coal combustion; combustion of pulverized coal; combustion of coal on bed in a fluidised bed and in a cyclone burners; stabilization of pulverized coal combustion; design consideration of coal burners; combustion generated pollution.

D. Lesson Planning

SR.NO	DATE/WEEK	UNIT NO	%WEITAGE	TOPIC NO
1	1 ST , 2 ND , 3 RD	1	20	1
2	4^{TH} ,5 TH , 6^{TH}	2	20	2
3	7^{TH} ,8 $^{\text{TH}}$, 9^{TH}	3	20	3
4	10^{TH} , 11^{TH} , 12^{TH}	4	20	4
5	13 TH ,14 TH , 15 TH	5	20	5

E. Method & Pedagogy

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
 & equal weightage should be given to all topics while teaching and conduction of all examinations.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.

F. Students Learning Outcomes

- The student can identify different areas of combustion engineering.
- Can find the applications of all the areas in day to day life.

G. Recommended Study Materials

Text & Reference Books:

- 1. Combustion Engineering Gary L. Borman, Kenneth W. Ragland, McGraw Hill
- 2. Principles of Combustion Kenneth K. Kuo, John Wiley & Sons
- 3. Fuels & Combustion S. P. Sharma & Chander Mohan, Tata McGraw Hill
- 4. Fuels & Combustion Sarkar
- 5. Introduction to combustion phenomenon, Kanury murty, Mc-Ggraw hill
- 6. Combustion, fundamentals, strehlow, Mc-Ggraw hill