M.E Semester: 1 M.E Mechanical (Automobile Engineering) Subject Name: Subject Name: Advanced Thermodynamics and Heat Transfer MEA103

A. Course Objective

- To present a problem oriented in depth knowledge of Advanced Thermodynamics and heat transfer
- To address the underlying concepts and methods behind Advanced Thermodynamics and heat transfer

B. Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total	Evaluation Scheme				Total	
			4	Р	Total	Credit		THEORY II		CIA	PR. /	
CODE	NAME				Total		THEORY		IE	CIA	VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
	Advanced					1.72						
METH102	Thermodynamics	11		T/I	7.7							
/	& Heat Transfer	4	0	2	6	5	3	70	30	20	30	150
MEA103	(common with	-18		14		W				ч,		
1.0	ME (Thermal)	M.		-170	100	76.						

C. Detailed Syllabus

- 1. Concept of Exergy and Entropy; Exergy for closed system; Entropy generation; entropy balance for closed system; behavior of gases; Equations of state.
- 2. Phase equilibrium; phase rule without chemical reaction; chemical potential of ideal gases; T-ds equations for simple compressible systems; Helmholtz and Gibbs functions; Maxwell relations; generalized relations for changes in enthalpy; entropy and internal energy; equations for specific heats; Clausius clapeyron equation; Joule-Thomson and Joule coefficients; applications of thermodynamic relations
- 3. Review of the basic laws of conduction; One dimensional steady state conduction with variable thermal conductivity and with internal distributed heat source; Extended surfaces-review and design considerations; Two dimensional steady state conduction; Unsteady state conduction; solutions using Groeber's and Heisler's charts for plates, cylinders and spheres suddenly immersed in fluids.
- 4. Review of convection and radiation heat transfer laws, Natural and forced convection; Heat transfer in turbulent flow; eddy heat diffusivity; Reynold's analogy between skin friction and heat transfer; von Karman; turbulent flow through circular tubes.

5. Review of radiation heat transfer laws and principles; diffuse surfaces and the Lambert's Cosine law; Radiation through non-absorbing media; Hottel's method of successive reflections.

D. Lesson planning

SR.NO	DATE/WEEK	<u>UNIT NO</u>	%WEITAGE	TOPIC NO
1	1 ST , 2 ND , 3 RD	1	20	1
2	4 TH ,5 TH , 6 TH	2	20	2
3	7 TH ,8 TH , 9 TH	3	20	3
4	10 TH ,11 TH , 12 TH	4	20	4
5	13 TH ,14 TH , 15 TH	5	20	5

E. Instructional Method & Pedagogy

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
 & equal weightage should be given to all topics while teaching and conduction of all examinations.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.
 - 1. Conduction heat transfer in composite wall.
 - 2. Conduction heat transfer in metal rod.
 - **3.** Conduction heat transfer in through insulating powder.
 - 4. Conduction heat transfer from a Pin fin.
 - **5.** Convection heat transfer in forced convection.
 - **6.** To study unsteady state heat transfer by the lumped capacitance.
 - **7.** To study of heat transfer in the process of condensation.
 - 8. To determine the value of Stefan Boltzmann constant for radiation heat transfer.
 - **9.** To measure the emissivity of test plate.

10. To study the pool boiling phenomena and measure the critical heat flux.

F. Students Learning Outcomes

- The student can identify different areas of Thermodynamics and Heat Transfer.
- Can find the applications of all the areas in day to day life.

G. Recommended Study Materials

Text & Reference Books:

- 1. Fundamentals of Engineering Thermodynamics, Moran MJ & Shapiro HM, John Wiley,
- 2. Engineering Thermodynamics work and heat Transfer, Roger Gordon & Yon Mayhew, Addison-Wesley, 2001
- 3. Thermodynamics an Engineering Approach, Cengel Y.A. & Boles M.A., TMH.
- 4. Fundamentals of Classical Thermodynamics, Van Wylen GJ & S onntag RE, Wiley 2
- 5. Thermodynamics, Wark K. Jr. & Donald E.R., McGraw Hill (6th Edn.); 1999.
- 6. Fundamentals of Heat Transfer, Encropera
- 7. Heat, Mass and Momentum transfer, Rohsenow and Choi Prentice Hall
- 8. Fundamentals of Heat Transfer, Grober, Erk and McGraw Hill Grigull
- 9. Analysis of Heat and Mass Transfer, Eckert and Drake McGraw Hill
- 10. Thermal Radiation, Siegel and Howell McGraw Hill.
- 11. Engineering Thermodynamics by Jones & Dugan
- 12. Engineering Thermodynamics by P. K. Nag
- 13. Basic Engineering Thermodynamics by T Ray chaudhary
- 14. Fundamentals of Engineering thermodynamics, R. Yadav.
- 15. Advanced thermodynamics Engineering, KalyanAnnamalai&Ishwar K Puri, CRC Press.

VIDYALAYA

- 16. Heat and Mass Transfer, R.K.Rajput
- 17. Heat and Mass Transfer, D.S.Kumar
- 18. Handbook of Thermal Engineering, Kreith F