Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

Subject Code: MECE204-N-B	Subject Title: NATURAL LANGUAGE PROCESSING & INFORMATION
	RETRIVAL

Te	aching so	cheme			Evaluation Scheme					
L	Т	Р	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	03	70	30	20	30	150

Learning Objectives:

- Learn to write code for text indexing and retrieval.
- Learn to evaluate information retrieval systems
- Learn to analyze textual and semi-structured data sets
- Learn about text similarity measure and Understanding about search engine
- Text Classification & Clustering
- Machine Translation

Outline of the Course:

Sr. No	Title of the Unit	Minimum Hours
1	Overview of text retrieval systems	5
2	IR Models	12
3	Query expansion and feedback	5
4	Text classification	5
5	Text clustering	5
6	Introduction to NLP	5
7	N-Gram Language Model	6
8	Statistical Graphical Model	10
9	NLP Applications	7
10	NLP and Deep Learning	4

Total hours (Theory): 64 Total hours (Lab): 32 Total hours: 96

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

Sr. No	Торіс	Lecture Hours	Weight age(%)
1	Overview of text retrieval systems	5	8
	Boolean retrieval		
	 The term vocabulary and postings lists 		
	Index compression		
2	IR Models	12	19
	Vector Space Model		
	TF-IDF Weight		
	Evaluation in information retrieval		
	Okapi/BM25;		
	Language models		
	KL-divergence;		
	Learning to Rank		
3	Query expansion and feedback	5	8
	Relevance feedback		
	pseudo relevance feedback		
	Query Reformulation		
4	Text classification	5	8
	The text classification problem		
	Naive Bayes text classification		
	k- nearest neighbors		
	Support vector Machine		
	Feature Selection		
5	Text Clustering	5	8
	Flat Clustering		
	K-means algorithm		
	PAM and PAMK		
	Hierarchical clustering		
	DBSCAN algorithm		
6	Introduction to NLP	5	8
	Introduction to NLP		
	 Regular Expression, tokenization 		
	Minimum Edit distance		
7	N-Gram Language Model	6	9
	Intro. N-Gram		
	 N-Gram probability estimation and perplexity 		
	 Smoothing technique(Laplace/good Turing/Kneser- 		
	Ney/Interpolation/JM smoothing/Dirichlet)		
8	Statistical Graphical Model	10	16
-	Hidden Markov Model(HMM)		

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

	Maximum Entropy Markov Model(MEMM)Conditional Random field(CRF)			
	 Latent Semantic Indexing 			
	Topic Model			
9	NLP Applications		07	10
	 Sentiment Analysis 			
	 Information Extraction 			
	Text Summarization			
	Machine Translation			
10	NLP and Deep Learning		04	06
	Simple Word Vector representations: word2vec, GloVe			
		Total	64	100

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

- To Understand Document as Vector
- Performance evolution metric for IR
- To understand search Engine functionality
- Various Supervised and Unsupervised learning Method
- Basic technique for language processing
- Text analysis
- Machine translation

Text Book:

- Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008. http://nlp.stanford.edu/IR-book/information-retrieval-book.html
- ChengXiang Zhai, Statistical Language Models for Information Retrieval (Synthesis Lectures Series on Human Language Technologies), Morgan & Claypool Publishers, 2008.
 http://www.morganclaypool.com/doi/abs/10.2200/S00158ED1V01Y200811HLT001

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

- D. Jurafsky and J. Martin "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition",
- C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing",

LIST OF PRACTICALS:

Sr. No	Name of Experiment				
1	Introduction to Lucerne/terrier/Indri and Sample index creation in Java/Pythoon.				
2	Basic Text Processing method on text docuemnt				
2	Query Expansion and Ranking in Lucene				
3	Implement Language Model with all smoothing technique				
4	Implementation of various classification algorithm on text				
5	Implementation of various Clustering algorithm on text				
6	Develop Pos Tagger				
7	Sentiment Analysis on Social Media data				
8	Implement LSA and Topic model				
9	Various track at TREC 2017 conference (students will be encouraged to participate in such track)				
	Clinical Decision Support Track				
	Contextual Suggestion Track				
	Real Time Summarization Track				
	Temporal Summarization Track				
	Tasks Track				
10	Various track at CLEF 2015 Conference(students will be encouraged to participate in below track				
	Linked Data Track				
	Tweet Contextualization track				
	Relevance Feedback Track				