Faculty of Engineering and Technology ## First Year Master of Engineering (Computer Engineering) In Effect from Academic Year 2017-18 Subject Code: MECE106-N-D Subject Title: DISTRIBUTED COMPUTING AND APPLICATION | Teaching scheme | | | | | Evaluation Scheme | | | | | | |-----------------|-----|-----|-------|-----------------|-------------------|-------|-----------------|-------|--------|-------| | L | т | Р | Total | Total
Credit | Theory | | Mid Sem
Exam | CIA | Pract. | Total | | Hrs | Hrs | Hrs | Hrs | | Hrs | Marks | Marks | Marks | Marks | Marks | | 04 | 00 | 02 | 06 | 05 | 03 | 70 | 30 | 20 | 30 | 150 | #### **LEARNING OBJECTIVES:** The objective of this course is to introduce students to the following concepts. - Describe the steps and algorithms used by load balancing concept in distributed system. - Recognize the different failure models and communication reliability for client server's security concept. - Discuss the effectiveness of recovery methods for concurrency control techniques. - Explain the impact of event ordering, mutual exclusion on synchronization concept. #### **OUTLINE OF THE COURSE:** | Unit No | Topics | Hours | |---------|--|-------| | 1 | Fundamentals of Distributed Systems | 09 | | 2 | Distributed Shared Memory | 09 | | 3 | Synchronization | 09 | | 4 | Transaction and Concurrency Control | 09 | | 5 | Resource Management and Distributed File Systems | 07 | | 6 | Fault Tolerance and Security | 07 | | 7 | Distributed Objects and Middleware Remote Method Invocation | 08 | | 8 | Enterprise Application Integration, Web Technologies, Web services | 06 | Total hours (Theory): 64 Total hours (Practical): 32 **Total hours: 96** Faculty of Engineering and Technology # First Year Master of Engineering (Computer Engineering) In Effect from Academic Year 2017-18 ## **DETAILED SYLLABUS:** | Sr. No | Topic | Lecture
Hours | Weight age
(%) | |--------|---|------------------|-------------------| | 1 | Fundamentals of Distributed Systems Distributed System Design Goals Distributed Computing System Models Challenges, Examples of Distributed Systems Inter Process Communication External Data Representation and Marshaling Client Server Communication, Group communication Case Study: SUN RPC RMI implementation | 09 | 14 | | 2 | Distributed Shared Memory Design and Implementation Issues Architecture of Distributed Shared Memory Granularity, Structure of Shared Memory Space Strict Consistency Model, Sequential Consistency Model Processor Consistency Model, Weak Consistency Model Release Consistency Model Munin: A Release Consistent DSM System Replacement Strategy, Thrashing Advantages of Distributed Shared Memory | 09 | 14 | | 3 | Synchronization Clock Synchronization, Drifting of clocks Clock Synchronization Algorithms Event Ordering Happened Before Relation, Logical Clocks Mutual Exclusion Centralized Approach, Distributed Approach Token Passing Approach Election Algorithms: Bully Algorithm A Ring Algorithm | 09 | 14 | | 4 | Transaction and Concurrency Control Nested Transactions Locks Optimistic Concurrency Control Time Stamp Ordering Flat and Distributed Transactions Concurrency Control in Distributed Transactions Distributed Deadlocks Transaction recovery | 09 | 14 | ## Faculty of Engineering and Technology ## First Year Master of Engineering (Computer Engineering) In Effect from Academic Year 2017-18 | 5 | Resource Management and Distributed File Systems | 07 | 11 | |---|---|----|-----| | | Features of a good scheduling Algorithm, Task Assignment | | | | | Approach | | | | | Load Balancing And Load Sharing Approach | | | | | Process Migration | | | | | Desirable Features of a Good Distributed File System | | | | | File Models | | | | | Name Services and Domain Name System | | | | | File Sharing Semantics, File Caching Schemes | | | | | File Service Architecture, File Replication | | | | | The service Architecture, the Replication | | | | 6 | Fault Tolerance and Security | 07 | 11 | | | Failure Models | | | | | Process Resilience | | | | | Reliable Communication (Client-Server, Group) | | | | | Distributed Commit | | | | | Recovery | | | | | Security Techniques | | | | 7 | Distributed Objects and Middleware Remote Method Invocation | 08 | 13 | | | COM/DCOM, Remote Method Invocation – Internet-Inter ORB | | | | | Protocol Object Persistence and .Net Remoting, Object | | | | | Serialization, Object Brokers, Message-Oriented Middleware | | | | 8 | Enterprise Application Integration, Web Technologies, Web | 06 | 09 | | | services | | | | | Concepts, Protocols: SOAP, WSDL, UDDI, Development of Web | | | | | services | | | | | Total | 64 | 100 | #### **INSTRUCTIONAL METHOD AND PEDAGOGY** (Continuous Internal Assessment (CIA) Scheme) - At the start of course, the course delivery pattern, prerequisite of the subject will be discussed. - Lectures will be conducted with the aid of multi-media projector, black board, OHP etc. - Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation. - One internal exam will be conducted as a part of internal theory evaluation. - Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation. - Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation. - The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures. - Experiments shall be performed in the laboratory related to course contents. ### **STUDENTS LEARNING OUTCOMES:** On successful completion of the course, the student will: - Be able to check the correctness of Synchronization concepts including event ordering, mutual exclusion and deadlock methodology. - Be able to solve concurrency control techniques using the locks, time stamp ordering and transaction recovery methods. Faculty of Engineering and Technology ## First Year Master of Engineering (Computer Engineering) In Effect from Academic Year 2017-18 - Become familiar with a variety of Load balancing algorithms and their performance characteristics and be able to choose the best one under a variety of requirements. - Explain the Distributed file system and their resource management. Explain File service architecture with file replication and fault tolerance methods. - Be able to use the different failure models, Reliable communication (client –server, group) to understand a security concept. - Become familiar with the Distributed shared memory's design and their implementation issues. - Become familiar with different web technologies and web services used in distributed system. #### **TEXT BOOKS:** - 1. Distributed Systems Principles and Paradigms by Andrew Tanenbaum, PHI - 2. Distributed Operating Systems by P. K. Sinha, PHI - 3. Distributed Computing Second Edition by Sunita Mahajan and Seema Shah, OXFORD #### **REFERENCE BOOKS:** - 1. Gerald Tel, "Distributed Algorithms", Cambridge University Press - 2. Distributed Computing: concepts and Applications by M. L. Liu - 3. Service Oriented Computing (Semantics, Processes, Agents), Munindar P. Singh, Michael N. Huhns, John Wiley & Sons, Ltd. - 4. Java Network Programming & Distributed Computing by David Reilly, Michael Reilly - 5. Java in Distributed System, Marko Boger, John Wiley and Sons Ltd. - 6. Web Services, Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju, Springer Verlag - 7. Various research papers in reputed journals. #### **LIST OF PRACTICALS:** | Sr. No | Name of Experiment | |--------|--| | 1 | Calculate CPU load for your machine and identify the state of your machine | | 2 | Get CPU load of other machine in the network. | | 3 | To implement RPC | | 4 | To implement concurrent client server application | | 5 | To implement concurrent daytime client server application | | 6 | Write a program to create CORBA based client server application | | 7 | Write a program to increment counter in shared memory | | 8 | Write a program to monitor SOAP request and response packet | | 9 | Write a program to solve produce-consumer problem | | 10 | Write a program to solve Dining Philosopher problem | | 11 | Simulate Lamport's Bakery Algorithm for distributed mutual exclusion. |