Faculty of Engineering and Technology First Year Master of Engineering (Computer Engineering) In Effect from Academic Year 2017-18

Subject Co	Subject Code: MECE106-N-A				Subject Title: MACHINE LEARNING					
Tead	Teaching scheme				Evaluation Scheme					
L	т	Р	Total	Total Credit	т	heory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	03	70	30	20	30	150

LEARNING OBJECTIVES:

Machine Learning is the discipline of designing algorithms that allow machines (e.g., a computer) to learn patterns and concepts from data without being explicitly programmed. This course will be an introduction to the Machine Learning algorithms, with a modern outlook, focusing on the recent advances, and examples of real-world applications of Machine Learning algorithms. It focuses on the principles and foundations of Machine Learning algorithms, delving deeper to understand what goes on "under the hood", and how Machine Learning problems are formulated and solved.

OUTLINE OF THE COURSE:

nit No	Topics	Hours
1	Introduction	06
2	Parametric Regression	06
3	Supervised Learning	06
4	Generative Learning	06
5	Discriminative Learning	06
6	Neural Networks & Deep Learning	08
7	Support vector machines	07
8	Graphical and sequential models	08
9	Unsupervised learning	08
10	Learning Theory	03

Total hours (Theory): 64 Total hours (Practical): 32 Total hours: 96

Faculty of Engineering and Technology **First Year Master of Engineering (Computer Engineering)** In Effect from Academic Year 2017-18

DETAILED SYLLABUS:

Sr. No	Торіс	Lecture	Weight age	
		Hours	(%)	
1	Introduction	06	09	
	Overview of machine learning			
	Related areas			
	Applications of ML			
	Current Problems in ML			
	Software Tools: MatLab			
2	Parametric Regression	06	09	
	Linear regression with one variable			
	Linear regression with multiple variable			
	Polynomial regressions			
	Gradient descent			
	Kernel methods			
3	Supervised Learning	06	09	
	Model and Feature Selection			
	Bayesian learning			
	Ensemble Systems: Bagging, Boosting			
	Evaluating and debugging learning algorithms			
		0.6		
4	Generative Learning	06	09	
	Gaussian parameter estimation			
	Maximum likelihood estimation			
	MAP estimation			
	Bayesian estimation			
	Bias And Variance Of Estimators			
	Missing And Noisy Features			
	Nonparametric Density Estimation	1		
	Gaussian discriminant analysis	A		
1	naive Bayes	<u>~~~</u> ~		
5	Discriminative Learning	06	09	
- N	Linear Discrimination	-1.17		
	Logistic Regression	SP		
	Logit And Logistic Functions	100		
	Generalized Linear Models			
	Softmax Regressio			

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

6	Neural Networks & Deep Learning	08	13
	Neural Networks: Representation		
	Neural Networks: Learning		
	 Neural Networks: the perceptron algorithm, multilayer 		
	perceptrons, backpropagation, nonlinear regression, multiclass		
	discrimination, training procedures, localized network structure,		
	dimensionality reduction interpretation.		
	Introduction to deep learning		
7	Support vector machines	07	11
	Functional And Geometric Margins,		
	Optimum Margin Classifier,		
1.1	Constrained Optimization,		
	Lagrange Multipliers,		
	Primal/Dual Problems,		
	Kkt Conditions,		
	Dual Of The Optimum Margin Classifier,		
	 Soft Margins, Kernels, Quadratic Programming, SMO Algorithm 		
8	Graphical and sequential models	08	13
	Bayesian Networks, Conditional Independence		
	Markov Random Fields		
	Inference In Graphical Models, Belief Propagation	1	
	Markov Models, Hidden Markov models, decoding states from		
	observations, learning HMM parameters		
9	Unsupervised learning	08	13
	K-Means Clustering		
	Expectation Maximization		
	Gaussian Mixture Density Estimation, Mixture Of Naive Bayes,		
	Model Selection		
	Dimensionality reduction: Feature Selection , Factor Analysis, PCA	1	
	(Principal Components Analysis), ICA (Independent Components	E. C.	
1	Analysis), Multidimensional Scaling, Manifold Learning	~ 2	
100.00	Anomaly Detection	N71	
10	Learning Theory	03	05
100	Bias-Variance Tradeoff	SP	
	Worst Case Learning	1	
	Total	64	100

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, white/black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Be introduced to the fundamental problems of machine learning.
- Have understanding of techniques, mathematical concepts, and algorithms used in machine learning to facilitate further study in this area.
- Have understanding of the limitations of various machine learning algorithms and the way to evaluate performance of machine learning algorithms.
- Have pointers into the literature and exercise a project based on literature search and one or more research papers.
- Be able to practice software implementation of different concepts and algorithms covered in the course.

REFERENCE BOOKS:

- 1. Elements of Statistical Learning, T. Hastie, R. Tibshirani and J. Friedman, Springer, 2001.
- 2. Machine Learning, E. Alpaydin, MIT Press, 2010.
- 3. Pattern Recognition and Machine Learning, C. Bishop, Springer, 2006.
- 4. Machine Learning: A Probabilistic Perspective, K. Murphy, MIT Press, 2012.
- 5. Pattern Classification, R. Duda, E. Hart, and D. Stork, Wiley-Interscience, 2000.
- 6. Machine Learning, T. Mitchell, McGraw-Hill, 1997.

FINAL PROJECT:

Students present selected topics and develop software implementation of related techniques based on the review of relevant literature. The work should be summarized in a concluding report which should include simulation results. A list of possible topics will be available prior to the project selection due date.

