Faculty of Engineering and Technology **First Year Master of Engineering (Computer Engineering)** In Effect from Academic Year 2017-18

Subject Code: MECE103-N Subject Title: DATA WAREHOUSING AND DATA MINING

Teaching scheme					Evaluation Scheme					
L	т	Ρ	Total	Total Credit	Tł	neory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	03	70	30	20	30	150

LEARNING OBJECTIVES:

The educational Objectives of this Course are:

- To Introduce various Data Mining Applications in real world scenario
- To be learning more about various mining tools for analysis and decision making
- Applying efficient mining methods to solve engineering problems
- Learning concepts of Business Intelligence in solutions, organizational changes, products, technologies and methods to organize key data to improve performance and profit.

OUTLINE OF THE COURSE:

Sr. No	Title of the Unit	Minimum Hours
1	Data Warehousing Fundamentals	8
2	Data Pre-processing	7
3	Data Extraction, Transformation and Loading (ETL)	8
4	Introduction to Business Intelligence	10
5	Mining Frequent Patterns, Associations, and Correlations	7
6	Classification and Prediction	8
7	Clustering	8
8	Current and Future Research Trends	8

Total Hours (Theory):64

Total Hours (Lab):32

Total Hours: 96

Faculty of Engineering and Technology **First Year Master of Engineering (Computer Engineering)** In Effect from Academic Year 2017-18

DETAILED SYLLABUS:

Sr. No	Торіс	Lecture	Weight age
		Hours	()%
1	Data Warehousing fundamentals	8	13
	Introduction		
	A Multi-Dimensional Data Model		
	Data Warehouse Architecture		
	Data Warehouse Implementation		
	 From Data Warehouse to Data Mining to Business 		
	Intelligence		
2	Data Pre-processing	7	10
	Data Cleaning		
	 Data Integration and Transformation 		
	Data Reduction		
	 Data Discretization and Concept Hierarchy Generation 		
3	Data Extraction, Transformation and Loading (ETL)	8	13
	Extracting the Data		
	 Transforming the Data 		
	 Loading the Data into a DW System 		
	ETL Using Export Import		
	Challenges for ETL		
	ETL Tools		
	 Difference between ETL and BI Tools 		
4	Introduction to Business Intelligence	10	15
	Introduction		
	A Data Framework For BI		
	Structured Vs. Semi-Structured Data		
	Framework		
	Architecture For Structured Data		
	Architecture For Semi-Structured Data		
	 BI as a Product, Process, Solution and Tools 		
	 Factor driving Business Intelligence 		
	 Role of Data, Information and Knowledge in Data 		
	Warehouse, Data Mining and Decision Support System		
	 Difference between BI and other related technologies. 		
	 Utilization and benefits of BI in Organization. 		
	Obstacles to BI		
	 Business Intelligence User Tools 		
	Research issues in BI		

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

5	 Mining Frequent Patterns, Associations, and Correlations Basic Concepts and a Road Map Efficient and Scalable Frequent Item set Mining Methods Mining Various Kinds of Association Rules Constraint based Association Mining 	7	10
6	 Classification and Prediction The fundamentals of classification systems Issues regarding Classification and prediction Differences between classification, recommendation, and clustering Applications of classification Classification methods: Decision tree, Bayesian Classification, Rule based, CART Neural Network CBR Rough set Approach Fuzzy Logic Genetic Algorithms Prediction methods: The fundamentals of Prediction Linear and nonlinear regression Accuracy of Classifier 	8	13

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

7	Clustering	8	13
	 Introduction to clustering 		
	Types of Data in Cluster Analysis		
	Interval-Scaled Variables, Binary Variables		
	Categorical, Ordinal, and Ratio-Scaled Variables		
	Variables of Mixed Types and Vector Objects		
	 Measuring the similarity of items 		
	 Exploring distance measures 		
	Euclidean, Squared Euclidean, Manhattan distance,		
	Cosine,		
	Tanimoto, Weighted distance		
	 Categorization of Major Clustering Methods 		
	K-means clustering		
	Fuzzy k-means clustering		
	Hierarchical Methods		
	CLARANS, BIRCH, ROCK, Chameleon		
	 Model-based clustering 		
	Deficiencies of k-means		
	Dirichlet clustering		
	Latent Dirichlet allocation (LDA)		
8	Current and Future Research Trends	8	13
	 Multirelational Data Mining, Spatial mining, web 		
	mining, text mining, Ensemble Classifier (Multiple		
	Classifier, Bagging, Boosting, Stacking), Incremental		
	learning		
	Total	64	100

GUIDELINES:

- Theory hours are to be utilized to teach the concepts
- Practical hours are to be utilized for making exhaustive programming practice for real life examples.
- The theory examination should contain approximate 2/3 weight age for logical examples.

INSTRUCTIONAL METHOD AND PEDAGOGY:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.

Faculty of Engineering and Technology **First Year Master of Engineering (Computer Engineering)** In Effect from Academic Year 2017-18

• Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOME:

On successful completion of the course, the student will:

- Be able to Compare various mining methods
- Be able to understand and identify the analytical characteristics of mining algorithms.
- Employ algorithm to model engineering problems, when appropriate.

RECOMMENDED STUDY MATERIAL:

REFERENCE BOOKS:

- 1. Data Mining concepts and Techniques by Jiawei Han, Micheline Kamber Elsevier.
- 2. M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley & Sons Inc.
- 3. Business Intelligence by Rajiv Sabherwal, Irma Becerra-Fernandez, Wiley Publications, John Wiley & Sons, Inc.

Web Links:

- 1. http://www.kdd.org/
- 2. http://www.statsoft.com/Textbook/Elementary-Statistics-Concepts
- 3. http://www.kdnuggets.com/websites/blogs.html
- 4. http://facweb.cs.depaul.edu/mobasher/classes/ect584/lecture.html

LIST OF EXPERIMENTS:

Sr.	Practical Aim
No.	
1	Data Preprocessing Techniques in Standard Tool like Excel Miner/Mat Lab
2	Perform ETL on any standard dataset (Export – Import, Data Pump etc.)
3	Generating different types of graphs on different types of data.
4	Implement and simulate different classification algorithm on standard dataset
5	Implement and simulate different clustering algorithm on standard dataset
6	Future prediction on Data mining Tool
7	Computing association rule with TANAGRA and WEKA
8	Building decision tree with TANAGRA and WEKA. Error rate estimation using a
	Cross validation.
9	Generate intelligent report for enterprise data using BI tools
10	A Survey paper on latest research in Data Ming and Business Intelligence