

Kadi Sarva Vishwavidyalaya
Faculty of Engineering & Technology

Second Year Master of Engineering (Computer Engineering)
(Semester-III)

(With effect from: Academic Year 2018-19)

Subject Code: MECE-303-N-D Subject Title: Advanced Complier Design

Pre-requisite

Teaching Scheme (Credits and Hours)
Teaching Scheme

Total
Credit

Evaluation Scheme

L T P Total Theory
Mid Sem

Exam
CIA Practical Total

Hours Hours Hours Hours Hours Marks Marks Marks Marks Marks

04 00 02 06 05 03 70 30 20 30 150

Learning Objectives:

 To understand, the foundation of compiler and mathematical models of computation.

 To understand, what compiler could do and what it couldn’t.

 To check the correctness of the compiler and measure the speed (runtime and compile
time)

 To see the degree of optimization.

 To check error reporting and analysis (feedback) to user.

 To check the debugging facility provided by the compiler.

Outline of the Course:

Sr. No
Title of the Unit

Minimum
Hours

1 Language Translation Overview 03

2 Lexical Analysis 04

3 Syntax Analysis 06

4 Syntax-Directed Translation 08

5 Memory Allocation , Organization And Memory Management 08

6 Intermediate Code Generation 08

7 Code Generation 08

8 Code Optimization 12

9 Symbol Table Management 07

 Total 64

Total hours (Theory): 64
Total hours (Lab): 32
Total hours: 96

Detailed Syllabus:

Sr.
No

Topic
Lecture
Hours

Weight
age (%)

1

Language Translation Overview

 Overview of language processors, translators, linker, loader.

 Types of language processors –assembler, interpreter, compiler.

 Overview and use of linker and loader

 Compilation phases, back end, front end, pass structureCompiler-
Construction Tools

03 04

2

 Lexical Analysis

 The Role of the Lexical Analyser

 Regular expressions and regular languages

 Input Buffering

 Finite automata (RE to NFA, NFA to DFA) Optimization of DFA-Based
Pattern Matchers

04 06

3

Syntax Analysis

 The Role of the Parser

 Context-Free Grammars

 Top-Down Parsing

 Bottom-Up Parsing (Operator-Precedence Parsing, LR Parsers) Using
Ambiguous Grammars

06 09

4

Syntax-Directed Translation

 Syntax-Directed Definitions

 Construction of Syntax Trees,

 Bottom Up Evaluation of S-Attributed Definitions

 L-Attributed Definitions

 Top Down Translation

 Bottom-Up Evaluation of Inherited Attributes

 Recursive Evaluators

 Analysis of Syntax-Directed Definitions

 Type Systems

 Specification of a Simple Type Checker

 Equivalence of Type Expressions

 Type Conversions

 Overloading of Functions and Operators

08 13

5

Memory Allocation , Organization And Memory Management

 Source Language Issues

 Storage Organization

 Storage-Allocation Strategies

 Access to Non local Names

 Parameter Passing and Language Facilities for Dynamic Storage

08 13

Allocation

 Dynamic Storage Allocation Techniques

 Activation Tree, Activation Record

 Symbol Table

 Static, Dynamic And Heap Storage Allocation,

 Garbage collection

6

Intermediate Code Generation

 Intermediate Languages

 Programming statements and intermediate codes: Declarations,
Assignment Statements, Boolean Expressions, Switch- Case
Statements, Procedure Calls, Loops

 Back patching

 Types of Intermediate Forms of the Program

08 13

7

Code Generation

 Issues in the Design of a Code Generator

 The Target Machine

 RunTime Storage Management

 Basic Blocks and Flow Graphs

 Next-Use Information

 A Simple Code Generator

 Register Allocation and Assignment

 The DAG Representation of Basic Blocks

 Peephole Optimization

 Generating Code from DAGs

 Dynamic Programming Code-Generation Algorithm

 Code Generators

08 13

8

Code Optimization

 The principal sources of optimization

 Common subexpressions, constant propagation, dead code
elimination, basic loop optimization, partial redundancy
elimination, SSA (static single assignment), induction variables and
reduction in strength

 Register allocation and assignment

 Data flow analysis: The Data-Flow Abstraction, The Data-Flow
Analysis Schema, Data-Flow Schemas on Basic Blocks, Reaching
Definitions, Live-Variable Arlalysis, Available Expressions, Iterative
data flow analysis, lattices of flow function, control-tree based data
flow analysis

 Control flow analysis: Approaches to control flow analysis, Depth
first search, Breadth first search, Preorder traversal, Postorder
traversal, Loops in flow graphs, Reducibility, Interval analysis and
control trees

12 18

9

Symbol Table Management

 General concepts

 Symbol Table as a data structure

 Various operations performed on Symbol Table

 Symbol table organizations for blocked structured language and
non-blocked structured language

07 11

 Total 64 100

Instructional Method and Pedagogy:
 At the start of course, the course delivery pattern, prerequisite of the subject will be

discussed.

 Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.

 Attendance is compulsory in lecture and laboratory which carries 10 marks in overall
evaluation.

 One internal exam will be conducted as a part of internal theory evaluation.

 Assignments based on the course content will be given to the students for each unit and will
be evaluated at regular interval evaluation.

 Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in
the overall internal evaluation.

 The course includes a laboratory, where students have an opportunity to build an
appreciation for the concepts being taught in lectures.

 Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:
On successful completion of this course, the student should be able to:

 be able to understand the principals of compiler design and will be able to generate the
basic compiler

 become familiar with front and back end of the compiler

 be able to use Lex and YACC tool.

 be able to perform lexical analysis and various parsing technique.

Reference Books:

1. Compilers: principles, techniques & tools by Alfred V Aho, Monica S. lam, Ravi Sethi,
Jeffrey D. Ullman, Pearson

2. Advanced compiler design & implementation by Steven S. Muchnick, Morgan Kaufmann
3. Optimizing Compilers for Modern Architectures by Randy Allen & Ken Kennedy, Morgan

Kaufmann
4. High Performance Compilers for Parallel Computing by Michael Wolfe, Addison-Wesley
5. Compiler Writing by Tremblay and Sorenson, BS Publicatio

List of experiments:
Sr. No. Name of Experiment

1 Implement a C program to identify keywords, identifiers and numbers using finite
automata.

2 Write a lex program to identify numbers, words and other characters and generate
tokens for each.

3 Write a lex program to count the number of characters, words, lines, new lines, tabs and
whitespaces in the given input

4 Write a lex program that will replace the word “Hello” with “ldrp” if the line starts with
the letter ‘a’ and with “college” if it starts with ‘b’.

5 Write a lex program to display the comments from given input file. Provide the input file
as command line argument.

6 Generate a lexer for C program.

7 Write a C program to eliminate left recursion and perform left factoring from given
productions.

8 Write a C program to implement any one top-down parser.

9 Write a C program to implement any one bottom-up parser.

10 Implementation of Yacc programs.
a. Write a Yacc program for desktop calculator with ambiguous grammar.
b. Write a Yacc program for desktop calculator with ambiguous grammar and additional
information

11 Write a Yacc program for calculator with unambiguous grammar.

12 Write a program to generate three address code of any one loop.

