

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

Subject Code: MECE-303-N-C Subject Title: Ubiquitous Computing	
Pre-requisite	-

Teaching Scheme (Credits and Hours)

-	Teaching S	Scheme			Evaluation Scheme					
L	Т	Р	Total	Total Credit	The	eory	Mid Sem Exam	CIA	Practical	Total
Hours	Hours	Hours	Hours		Hours	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	03	70	30	20	30	150

Learning Objectives:

- Ubiquitous computing (Ubicomp) is a concept in software engineering and computer science where computing is made to appear anytime and everywhere.
- A user interacts with the computer, which can exist in many different forms, including laptop computers, tablets and terminals in everyday objects such as a fridge or a pair of glasses.
- Course gives a broad overview of different aspects of ubiquitous computing and students work on projects related to ubicomp.

Outline of the Course:

Sr. No	Title of the Unit	Minimum Hours
1	Introduction Cloud Computing , Applications & Requirements	12
2	Smart Devices and Services, Cards, Device networks	09
3	Human Computer Interaction, Tagging, Sensing and Controlling	10
4	Context-Aware Systems and Intelligent System	12
5	IS Interaction and Autonomous System Artificial Life	09
6	Ubiquitous Communication & Management of Smart Devices	12
	Total	64

Total hours (Theory): 64
Total hours (Lab): 32
Total hours: 96

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

Detailed Syllabus:

Sr. No.	Topic	Lecture Hours	Weight age (%)
1	Introduction Cloud Computing , Applications & Requirements:		
	 Modelling the key Ubiquitous Computing Properties 		
	System Environment Interaction		
	Architecture Design: Smart DEI Model		
	Example Early UbiCom Research Projects	12	18
	Everyday Application in the virtual, Human and Physical world		
2	Smart Devices and Services, Cards, Device networks:		
	Service Architecture Models		
	Service provision lifecycle		
	 Virtual Machines and operating Systems 		
	Smart Mobile Devices, users, Resources and code	09	15
	OS for Mobile Computers and communicator Devices	09	13
	Smart Card Devices and Device Networks		
3	Human Computer Interaction, Tagging, Sensing and Controlling:		
	 User interface and Interaction for widely used devices 		
	Hidden UI via Basic Smart, Wearable and Implanted Devices		
	Human Center Design, User Models, IHCI Design		
	Tagging and Physical world, Sensors and Sensors Networks	10	16
	MEMS, Embedded system and Real-time System	10	16
	Control System , Robots		
4	Context-Aware Systems and Intelligent System:		
	Introduction and Modelling		
	Mobility and Spatial, ICT Awareness		
	Basic Concepts of IS, Architecture	12	18
	Semantic KB IS, Classical Logic IS Soft Computing IS Models,	12	18
	Operations		
5	IS Interaction and Autonomous System Artificial Life:		
	Interaction Multiplicity, Design, Application		
	Basic Autonomous Intra-Acting Systems		
	Reflective and Self-Aware System	09	15
	Self-management and Autonomic Computing, Artificial Life		
6	Ubiquitous Communication & Management of Smart Devices :		
	Audio, data & wireless data Networks,		
	Universal & Transparent data network access		
	Ubiquitous Networks & Design Issues	12	18
	Managing Virtual, Human User Centered & Physical environment		
	Total	64	100

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

On successful completion of this course, the student should be able to:

- Understand the basic applications and requirements of Ubiquitous Computing
- Be able to learn context aware systems
- To know about Ubiquitous communications
- Understand about Ubiquitous Systems
- To know about human interaction issues and social issues in Ubiquitous Computing

Reference Books:

- 1. Ubiquitous Computing: Smart Devices, Environments and Interactions, Stefan Poslad , 1st Edition, Wiley.
- 2. Ubiquitous Computing Fundamentals, John Krumm, 1st Edition, CRC Press
- 3. Computer Human Interaction, 6th Asia Pacific Conference, APCHI 2004, Rotorua, New Zealand, June 29-July 2, 2004. Proceedings
- 4. Methods and technologies for experimenting with ubiquitous computing, VTT Electronics
- 5. Jochen Burkhardt, Horst Henn, Stefan Hepper, Thomas Schaec & Klaus Rindtorff. --- Pervasive Computing Technology and Architecture of Mobile Internet Applications, Addision Wesley, Reading, 2002.

List of experiments

Sr. No.	Name of Experiment
1	To Study WML and Write a WML Scripting for a simple calculator
2	Write a WML Scripting Application to Design mobile phonebook.
3	Write a J2ME program to display hello world on the screen
4	Write a program to create a Phone Book MIDlet
5	WAP in J2ME shows how to display a simple LOGIN SCREEN on the J2ME phone and how to authenticate
	to a HTTP server.
6	WAP in J2ME to send SMS
7	To study XML and WAP in detail. Sample Program using XML and WAP
8	To study Tiny OS and Run sample application on it.
9	To study Tossim Simulator and Run sample program on it
10	Technical White Paper on Wearable computing.