

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

Subject Code: MECE-303-N-A	Subject Title: Neural Networks
Pre-requisite	

Teaching Scheme (Credits and Hours)

	Teaching	Scheme			Evaluation Scheme					
L	Т	Р	Total	Total Credit	Theory		Mid Sem Exam	CIA	Practical	Total
Hours	Hours	Hours	Hours		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	03	70	30	20	30	150

Learning Objectives:

- The main objective of Neural Network Techniques to Improve Data Analysis Solutions is to strengthen the dialogue between the statistics and soft computing research communities in order to cross-pollinate both fields and generate mutual improvement activities.
- Also introduce the neural networks for classification, regression and to give design methodologies for artificial neural networks;

Outline of the Course:

Sr. No	Title of the Unit	
1	Introduction to Artificial Intelligence System	
2	Fundamentals of Neural Networks	10
3	Neural Network Architecture	10
4	Back propagation Networks	08
5	Associative Memory	10
6	Adaptive Resonance Theory	08
7	Introduction about Fuzzy set theory	05
8	Fuzzy Systems	06
	Total	64

Total hours (Theory): 64
Total hours (Lab): 32
Total hours: 96

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

Detailed Syllabus:

Sr. No	Topic	Lecture Hours	Weight age (%)
1	Introduction to Artificial Intelligence System: Neural Network, Fuzzy logic, Genetic Algorithm.	05	08
2	Fundamentals of Neural Networks: What is Neural Network, Model of Artificial Neuron, Learning rules and various activation functions.	10	16
3	Neural Network Architecture: Single layer Feed-forward networks. Multilayer Feed-forward networks. Recurrent Networks.	08	12
4	Back propagation Networks: Back Propagation networks, Architecture of Back-propagation(BP) Networks, Back-propagation Learning, Variation of Standard Back propagation algorithms.	08	12
5	Associative Memory: Autocorrelators, Heterocorrelators, Wang et al's Multiple Training Encoding Strategy, Exponential BAM, Associative Memory for Real coded pattern pairs, Applications.	10	16
6	Adaptive Resonance Theory: Cluster Structure, Vector Quantization, Classical ART Network, Simplified ART Architecture, ART1 and ART2 Architecture and algorithms, Applications, Sensitivities of ordering of data.	07	11
7	Introduction about Fuzzy set theory: Fuzzy versus Crisp, Crisp and fuzzy sets, Crisp and Fuzzy relations.	05	08
8	Fuzzy Systems: Crisp Logic, Predicate Logic, Fuzzy logic, Fuzzy rule based system, Defuzzification Methods, Applications.	06	09
9	Integration of Neural Network, Fuzzy logic and Genetic Algorithm: Hybrid system. Neural Networks, Fuzzy logic, and Genetic Algorithm Hybrids.	05	08
	Total	64	100

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

On successful completion of this course, student will be able to

- Obtain the fundamentals and types of neural networks. The student will have a broad knowledge in developing the different algorithms for neural networks.
- Analyze neural controllers
- Have a broad knowledge in Fuzzy logic principles and will be able to determine different methods of Deffuzification.

Reference Books:

- 1. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995.
- 2. Neural Networks, Fuzzy Logic and Genetic Algorithms, by S.Rajasekaran and G.A. Vijayalakshmi Pai.
- 3. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.
- 4. Build Neural Network With MS Excel sample by Joe choong.

Faculty of Engineering & Technology Second Year Master of Engineering (Computer Engineering) (Semester-III)

(With effect from: Academic Year 2018-19)

List of experiments:

Sr. No.	Name of Experiment
1	Create a perceptron with appropriate no. of inputs and outputs. Train it using fixed increment learning algorithm until no change in weights is required. Output the final weights.
2	Create a simple ADALINE network with appropriate no. of input and output nodes. Train it using delta learning rule until no change in weights is required. Output the final weights.
3	Train the autocorrelator by given patterns: A1=(-1,1,-1,1), A2=(1,1,1,-1), A3=(-1, -1, -1,1). Test it using patterns: Ax=(-1,1,-1,1), Ay=(1,1,1,1), Az=(-1,-1,-1,-1).
4	Train the hetrocorrelator using multiple training encoding strategy for given patterns: A ₁ =(000111001) B ₁ =(010000111), A ₂ =(111001110) B ₂ =(100000001), A ₃ =(110110101) B ₃ (101001010). Test it using pattern A ₂ .
5	Implement Linear/Logistic regression
6	Implementation of Naïve Bayes/SVM/SGD/SVM classifier on text and image
7	To Implement Convolution Neural network for Text classification or Image Classification
8	To study Word Embedding techniques : Word2vec,doc2vec,Glove