Faculty of Engineering and Technology **First Year Master of Engineering (Computer Engineering)** In Effect from Academic Year 2017-18

Subject Code: MECE-205-N-C Subject Title: DIGITAL IMAGE PROCESSING & COMPUTER VISION

Teaching scheme			Evaluation Scheme							
L	т	Ρ	Total	Total Credit	т	heory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	03	70	30	20	30	150

The objective of this course is

- To study the image fundamentals and mathematical transforms necessary for image processing
- To study the image enhancement techniques
- To study image compression procedures
- To study image segmentation and representation techniques
- To study image restoration procedures

OUTLINE OF THE COURSE:

Unit No	Topics	Hours
1	Introduction and Digital Image Fundamentals	07
2	Image Enhancement in Frequency and spatial Domain	10
3	Image Restoration	06
4	Color Image Processing	06
5	Wavelets and Multi-resolution Processing	09
6	Image Compression	11
7	Image Segmentation and Image Morphological Image Processing:	15

Total hours (Theory): 64

Total hours (Practical): 32

Total hours: 96

Faculty of Engineering and Technology **First Year Master of Engineering (Computer Engineering)** In Effect from Academic Year 2017-18

DETAILED SYLLABUS

Sr. No	Торіс	Lecture Hours	Weight age (%)
	Introduction and Disital Image Fundamentals	Hours	(70)
1	Introduction and Digital Image Fundamentals		
	Introduction to Digital Image Fundamentals		
	Image as 2D data	07	11
	 Image Representation –Grey and Color images 		
	Image Sampling and Quantization		
	• Neighbors of pixel adjacency connectivity, regions and boundaries,		
	Distance measures.		
2	Image Enhancement in Frequency and enotial Demain		
2	Image Enhancement in Frequency and spatial Domain		
	Basic gray level Transformations,		
	Histogram Processing Techniques		
	Histogram Equalization	10	16
	Contrast Stretching,	10	10
	Introduction to the Fourier transform and frequency domain		
	concepts.		
	 Smoothing and Sharpening Filters for frequency and spatial 		
	domain.		
3	Image Restoration		
	 Noise models, mean, order—statistics, adaptive filters. Band 		
	reject, Band pass and notch filters.	06	09
	Inverse Filtering		
	Noise Reduction		
4	Color Image Processing:		
	Color fundamentals and Models		
	Color Transformation		
	Smoothing and Sharpening	06	09
	Color Segmentation		
5	Wavelets and Multi-resolution Processing:		
	Image pyramids		
	Multi-Resolution Expansion	09	14
	Wavelet Transform		
	Harr Transform		

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

6	 Image Compression : Fundamentals and redundancy Huffman Coding Arithmetic Coding LZW Coding JPEG Compression Standard Wavelet based image compression 	11	18
7	 Image Segmentation and Image Morphological Image Processing: Edge based segmentation Region based segmentation Region split and merge techniques Basic morphological operations Erosion, dilation, opening, closing Boundary extraction region filtering connected component extraction Convex Hull Thinning and Thickening 	15	23

INSTRUCTIONAL METHOD AND PEDAGOGY (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- Understand the basic concepts image processing.
- Clear Understanding of Spatial and Frequency domain.
- Image Restoration & Enhancement techniques.
- JPEG, MPEG understanding.
- Be able to learn color image processing.

Faculty of Engineering and Technology

First Year Master of Engineering (Computer Engineering)

In Effect from Academic Year 2017-18

- Be able to learn segmentation.
- Familiar with morphological image processing.

REFERENCE BOOKS:

- 1. Digital Image Processing, Second Edition by Rafel C Gonzalez and Richard E. Woods, Pearson Education
- 2. Digital Image Processing by Bhabatosh Chanda and Dwijesh Majumder, PHI
- 3. Fundamentals of Digital Image Processing by Anil K Jain, PHI
- 4. Digital Image Processing Using Matlab, Rafel C. Gonzalez and Richard E. Woods, Pearson Education

LIST OF PRACTICALS

Sr. No	Name of Experiment			
1	Introduction to Image Processing Toolbox-Matlab			
2	Read an 8 bit image and then apply different image enhancement techniques:			
	Brightness improvement			
	Brightness reduction			
	Thresholding			
	Negative of an image			
	Log transformation			
	Power Law transformation			
3	To write and execute programs for image arithmetic operations and logical operations			
4	Implement different interpolation techniques using MATLAB			
5	Implementation of Histogram Processing and equalization			
6	Implementation of various smoothing filters			
7	To write and execute program for geometric transformation of image : Translation, Scaling, Rotation,			
	Shrinking, Zooming			
8	Read an image and apply (1) Gaussian 3x3 mask for burring (2) High pass filter mask with different masks (3)			
	Laplacian operator with center value positive and negative (4) High boost filtering.			
9	Write a program to implement various low pass filters and high pass filter in frequency domain			
10	Implement Image compression using DCT Transform			
11	Write and execute program for image morphological operations erosion and dilation			