## MATHEMATICS-II <br> (LINEAR ALGEBRA \& VECTOR CALCULUS) <br> BE $2^{\text {nd }}$ SEMESTER (ALL BRANCHES) <br> SUB CODE: - CC101B <br> Teaching Scheme (Credits and Hours)

| Teaching scheme |  |  |  | Total Credit | Evaluation Scheme |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | T | P | Total |  | The |  | Mid Sem Exam | CIA | Pract. |  |
| Hrs | Hrs | Hrs | Hrs |  | Hrs | Marks | Marks | Marks | Marks | Marks |
| 03 | 02 | 00 | 05 | 05 | 03 | 70 | 30 | 50 | 00 | 150 |

## LEARNING OBJECTIVES:

The objective of this course is

- To present the foundations of many basic Mathematical tools and concepts related Engineering.
- To provide a coherent development to the students for the courses of various branches of Engineering like Control Theory, Circuits and Networks, Digital Logic design ,Fluid Mechanics, Machine Design etc
- To enhance the student's ability to think logically and mathematically.
- To give an experience in the implementation of Mathematical concepts which are applied in various field of Engineering.
Outline of the Course:

| Unit No | Topics |
| :--- | :--- |
|  | Linear Algebra with applications |
| 1 | Matrix Theory and Application of Matrices |
| 2 | Eigen value and Eigenvector and Applications |
| 3 | Vector Space |
| 4 | Linear Transformation |
|  | Vector Calculus |
| 5 | Vector differential Calculus |
| 6 | Vector Integral Calculus |
| Total hours (Theory): $\mathbf{4 5}$ <br> Total hours (Tutorial): $\mathbf{3 0}$ <br> Total hours: $\mathbf{7 5}$ <br> Detailed Syllabus |  |


| Unit <br> No | Topics | Lectures <br> (Hours) | Weight age |
| :--- | :--- | :--- | :---: |
|  | Linear Algebra with applications |  |  |
| $\mathbf{1}$ | Matrix Theory and Application of Matrices: Definition and Special Types <br> of matrices, Determinant, Rank, Inverse, Row Echelon Form and Reduce <br> Row Echelon Form, Homogeneous and nonhomogeneous System of linear <br> equation, Caley- Hamilton Theorem, <br> Applications: Solution of System of linear equations, Linear dependence <br> and Linear Independence. | 07 | $15 \%$ |
| $\mathbf{2}$ | Eigen value and Eigenvector: Definition, Properties, Diagonalization, <br> Algebraic multiplicity, Geometric multiplicity, Similarity of Matrices. <br> Applications: Quadratic form, Bilinear Form, Canonical Form. | 06 | $15 \%$ |
| $\mathbf{3}$ | Vector Space: Vectors in Rn, Definition, Subspace, Linear Combination, <br> Linear dependence and Linear Independence of vectors, Span, Basis, <br> Reduction and Extension to Basis, Dimension, Change of Basis, Rank <br> Nullity Theorem Column space, Row space and Null space. | 09 | $20 \%$ |
| $\mathbf{4}$ | Linear Transformation: Definition, Basic Properties, Linear <br> Transformation as Rotation, Reflection, Expansion, Contraction, Shear, <br> Projection, Matrix of Linear transformations, Kernel, Range, Change of <br> Basis and Similarity, Rank Nullity Theorem. | 09 | $20 \%$ |


|  | Vector Calculus |  |  |
| :--- | :--- | :---: | :---: |
| $\mathbf{5}$ | Vector differential Calculus: Tangent vector, normal vector, vector <br> differentiation, Gradient, Curl, divergence and their geometrical meaning, <br> Solenoidal vector, Irrotational vector, Conservative field. | 07 | $15 \%$ |
| $\mathbf{6}$ | Vector Integral Calculus: line Integral, Surface integral, Volume Integral, <br> Green's Theorem, Stokes Theorem and Gauss Divergence Theorem. | 07 | $15 \%$ |
| Total |  |  |  | $\mathbf{4 5} \quad 1 \mathbf{1 0 0 \%}$.

Instructional Method and Pedagogy (Continuous Internal Assessment (CIA) Scheme)

- Two Faculties will be covering the syllabus in each branch for 3 hours in a week. In Tutorial, class must be divided into two subclasses $\&$ faculties will be solving or assigning the problem of the subject in each subclass.
- Attendance is compulsory in lectures and Tutorial which carries 05 Marks.
- At regular intervals assignments is given. In all, a student should submit all assignments of 30 marks each.
- Classroom participation and involvement in solving the problems in Tutorial rooms carries 05 Marks.
- Viva Voce will be conducted at the end of the semester of 10 Marks.
- One internal exam of 30 marks is conducted as a part of internal theory evaluation.


## Students Learning Outcomes:

At the end of the course

- The students will be able to think logically and mathematically in any field of engineering.
- The students will gain an experience in the implementation of Mathematical concepts which are applied in various field of Engineering.


## Text Books:

(i) Advance Engineering Mathematics by E Kreyszig, $8^{\text {th }}$ edition, Willey India.
(ii) Elementary linear Algebra with Application by H Anton, $9^{\text {th }}$ edition, Willey India.

## Reference Books:

(1) Thomas Calculus by M D Weir, Joel Hass and F R Giordano, $11^{\text {th }}$ Edition, Pearson Education.
(2) Calculus by T M apostol, Vol.II, $2^{\text {nd }}$ Edition, Willey India.
(3) Single and Multivariable Calculus by Hughes-Hallett, Gleason, Mccallum, $3{ }^{\text {rd }}$ Edition, John Willey and Son.

List of Tutorials

| Sr. No | Tutorial Content |
| :--- | :--- |
| 1 | Assignments on "Matrix Theory and Application of Matrices". |
| 2 | Problem solving on "Eigen value and Eigenvector and Applications". |
| 3 | Problems solving on "Vector Space". |
| 4 | Assignments on "Linear Transformation". |
| 5 | Assignments on "Vector differential Calculus". |
| 6 | Problem solving on "Vector Integral Calculus". |

