B.E Semester: V Mechanical Engineering

Subject Name: Theory of Machines

A. Course Objective

- To develop a solution oriented approach by in depth knowledge of Theory of Machines.
- To address the underlying concepts, methods and application of different machines.

B. Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total	Evaluation Scheme				Total	
306	JECI	T	т	P	Total	Credit	тн	EORY	ΙE	E CIA PR. /		
CODE	NAME	L	1	1	Total		111	LOKI	IL.	CIA	VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
ME501	Theory of Machine	3	0	2	5	4	3	70	30	20	30	150

C. <u>Detailed Syllabus</u>

- 1. Brakes and Dynamometers: Introduction, Brakes classification, Mechanical Brakes-Shoe brake, Band brake, Band and block brake, Internal expanding shoe brake, Braking of vehicle, Dynamometer, Absorption and transmission type.
- 2. Governors: Introduction, Function and types of governors, Centrifugal governors, Watt governor, Porter governor, Proell governor, Hartnell governor, characteristics of governor-stability, Sensitivity, isochronism, Hunting controlling forces and stability, Effort and power of governor, Inertia governor.
- 3. Gyroscope: Concept of gyroscope, Angular acceleration, Gyroscopic effects in ships, Airplanes, Stability of two wheeled vehicle, Stability of automobile negotiating a curve, Gyroscopic analysis of inclined rotating discs.
- 4. Flywheel: Function, construction, Flywheel's rim and dimensions, Operation of flywheel in a punching machine, Turning moment diagram, Fluctuation of energy and fluctuation of speed of crank shaft, Coefficient of fluctuation of energy and speed.
- 5. Inertia forces in reciprocating parts: Introduction, D –Alberts's Principle, Effect of number of forces on a rigid, Velocity and acceleration of the piston, Forces on the reciprocating parts of an engine considering friction and inertia of moving parts- piston effort, force acting along connecting rod, Thrust on sides of cylinder walls, Crank effort, Thrust on crank shaft, Dynamically equivalent systems, Compound pendulum, Bifilar suspension, Trifilar suspension, Klein's construction.
- 6. Synthesis of linkages: Kinematic synthesis, Function generation, Path generation, Motion generation, Graphical synthesis, Precision positions, Structural error and chebychev spacing.

D. Lesson planning

SR.NO	DATE/WEEK	UNIT NO	%WEIGHTAGE	TOPIC NO
1	$1^{ST}, 2^{ND}, 3^{RD}$	1	20	1
2	$4^{\text{TH}},5^{\text{TH}},6^{\text{TH}}$	2	20	2
3	$7^{\text{TH}}, 8^{\text{TH}}, 9^{\text{TH}}$	3,4	20	3,4
4	$10^{\text{TH}}, 11^{\text{TH}}, 12^{\text{TH}}$	5	20	5
5	$13^{\text{TH}}, 14^{\text{TH}}, 15^{\text{TH}}$	6	20	6

E. Instructional Method & Pedagogy

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- 2. Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all topics while teaching and conduction of all examinations.
- **3.** Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- **4.** One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- 5. Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- **6.** Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- 7. The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- **8.** Experiments shall be performed in the laboratory related to course contents and as per below suggested list of experiments:
 - 1. To demonstrate different types of Brakes to calculate braking effort.
 - 2. To perform evaluation of brake type dynamometer.
 - 3. To demonstrate & perform Gravity control governors evaluation.
 - 4. To demonstrate & perform spring control governors evaluation.
 - 5. To demonstrate & perform gyroscope evaluation.
 - 6. To demonstrate flywheel and its effect on dynamic of system.
 - 7. Analyze Influence of Inertia Upon Velocity & Acceleration.
 - 8. To perform synthesis of mechanism by analytical method.
 - 9. To perform synthesis of mechanism by graphical method.

F. Students Learning Outcomes

- The student can identify different areas of Theory of Machines.
- Can find the applications of all the areas in day to day life.

G. Recommended Demonstrate Materials

Text & Reference Books:

- 1. Theory of Machines by S.S. Rattan., Tata McGraw Hill.
- 2. Dynamics of Machinery by Farazdak Haideri, Nirali Publication.
- 3. Theory of Machines by Dr. Sadhu Singh Pearson Education.
- 4. Theory of Machines and Mechanisms by J.Uicker, Gordon R Penstock & J.E. Shigley Oxford International Edition.
- 5. Kinematics, Dynamics and Design of Machinery by Kenneth J Waldron, Gary L Kinzel Wiley Edition.
- 6. Theory or Mechanisms and Machines by Amitabh Ghosh and A. Kumar Mallik.
- 7. Theory of Machines P. L. Ballaney
- 8. Kinematics By V.M. Fairs (McGraw Hill)
- 9. Mechanism Design: Analysis and Synthesis Vol. I by A. Erdman and G.N. Sander (Prentice Hall)
- 10. Kinematics and Dynamics of Planer Mechanisms by Jeremy Hirsihham (McGraw Hill).