Kadi Sarva Vishvavidyalaya, Gandhinagar Bachelor of Engineering (Electrical Engineering Syllabus) DIGITAL ELECTRONICS

B.E. SEM-IV SUBJECT CODE: EE-405

Course Objective:

The educational objectives of this course are

- To present a problem oriented introductory knowledge of Digital circuits and its applications.
- To focus on the study of electronic circuits.

Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total	Evaluation Scheme					Total
		L	Т	P	Total	Credit	TH	EORY	IE	CIA	PR. / VIVO	
CODE	NAME										VIVO	Marks
		Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	
EE-405	Digital Electronics	3	0	0	3	3	3	70	30	20	00	120

Detailed Syllabus

- 1. Number system and codes:Binary, octal, hexadecimal and decimal Number systems and their inter conversion, BCD numbers (8421-2421), gray code, excess—3 code, cyclic code, code conversion, ASCII, EBCDIC codes. Binary addition and subtraction, signed and unsigned binary numbers, 1's and 2's complement representation.
- 2. Boolean Algebra: Basic logic circuits: Logic gates (AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR and their truth tables,), Universal Gates, Laws of Boolean algebra, De-Morgan's theorem, Min term, Max term, POS, SOP, KMap, Simplification by boolean theorems, don't care condition
- Logic Families: Introduction to digital logic family such as RTL, DTL, TTL, ECL, CMOS, IIR, HTL etc., their comparative study, Basic circuit, performance characteristics, Wired logic, open collector output etc
- 4. Combinational Logic: The Half adder, the full adder, subtractor circuit. Multiplxer demultiplexer, decorder, BCD to seven segment Decorder, encoders.
- 5. Flip flop and Timing circuit: set-reset laches, D-flipflop, R-S flip-flop, J-K Flip-flop, Master slave Flip flop, edge triggered flip-flop, T flip-flop.
- 6. Registers & Counters: Synchronous/Asynchronous counter operation, Up/down synchronous counter, application of counter, Serial in/Serial out shift register, Serial in/Serial out shift register, Serial in/parallel out shift register, parallel in/ parallel out shift register, parallel in/Serial out shift register, Bi-directional register.

Kadi Sarva Vishvavidyalaya, Gandhinagar Bachelor of Engineering (Electrical Engineering Syllabus)

Lesson Planning

	Lesson Flamming					
SR No.	No. of	% Weightage	Торіс			
	Hours	in Exam	ιορια			
1	05		Number system and codes:Binary, octal, hexadecimal and decimal			
			Number systems and their inter conversion, BCD numbers (8421-			
			·			
<u> </u>		15	2421).			
2	05	15	gray code, excess-3 code, cyclic code, code conversion, ASCII,			
			EBCDIC codes. Binary addition and subtraction, signed and unsigned			
			binary numbers, 1's and 2's complement representation.			
3	10		Boolean Algebra: Basic logic circuits: Logic gates (AND, OR, NOT,			
			NAND, NOR, Ex-OR, Ex-NOR and their truth tables,), Universal			
		20	Gates, Laws of Boolean algebra, De-Morgan's theorem, Min term,			
		20	Max term, POS, SOP, KMap, Simplification by boolean theorems,			
			*			
			don't care condition			
4	10		Logic Families: Introduction to digital logic family such as RTL,			
		15	DTL, TTL, ECL, CMOS, IIR, HTL etc., their comparative study, Basic			
		13	circuit, performance characteristics, Wired logic, open collector output			
			etc			
5	05		Combinational Logic: The Half adder, the full adder, subtractor			
		10	circuit. Multiplxer de-multiplexer, decorder, BCD to seven segment			
		-5	Decorder, encoders.			
			Decorder, encoders.			
6	05		Flip flop and Timing circuit: set-reset laches, D-flipflop, R-S flip-			
	05	10				
		10	flop, J-K Flip-flop, Master slave Flip flop, edge triggered flip-flop, T			
			flip-flop.			
<u> </u>	0.5		Di-t			
7	05		Registers & Counters: Synchronous/Asynchronous counter			
			operation, Up/down synchronous counter, application of counter,			
			Serial in/Serial out shift register.			
		30				
			Serial in/Serial out shift register, Serial in/parallel out shift register,			
			parallel in/ parallel out shift register, parallel in/Serial out shift			
			register, Bi-directional register			
			105.000, 21 directional regions			
TOTAL	45	100				
.01/12	.5	100				
L						

Instructional Method & Pedagogy

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.

Kadi Sarva Vishvavidyalaya, Gandhinagar Bachelor of Engineering (Electrical Engineering Syllabus)

- Two internal exams may be conducted and average of the same may be converted to equivalent of 15 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry a weight age of five marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar /Tutorial may be conducted and having share of five marks in the overall internal evaluation.

Students Learning Outcomes

On successful completion of the course

- The student can acquire the basic knowledge of measurement principles and their application in electrical engineering.
- The students will be able to effectively employ electrical and electronics instruments for measurements of various electrical quantities.

Recommended Study Materials

Text &Reference Books:

- 1. Digital Fundamentals by Morris and Mano, PHI Publication
- 2. Fundamental of digital circuits by A.ANANDKUMAR, PHI Publication
- 3. Digital Fundamaentals by FLOYD & JAIN, Pearsons Pub
- 4. Fundamentals of Logic Design by Charles H. Roth Thomson