Subject Name: Distributed Systems Subject Code: CE 606-1 / IT 606-1

Teaching Scheme (Credits and Hours)

Teaching scheme					Evaluation Scheme					
L	Т	P	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	04	07	05	3	70	30	20	30	150

Learning Objectives:

The objective of this course is

- Understanding Remote Communication and Interprocess Communication
- Study about various distributed client server models
- Create an awareness of the major technical challenges in distributed systems design and implementation
- Emerging trends in distributed computing
- Understanding Distributed Shared Memory and File System

Outline of the Course:

Sr. No	Title of the Unit	Minimum Hours	
1	Introduction Distributed System Concepts	4	
2	Basic Network Communication	4	
3	Interprocess and Remote Communication	6	
4	Distributed System Synchronization	7	
5	Distributed System Management	6	
6	Distributed Shared Memory	6	
7	Distributed File System	6	
8	Emerging Trends in Distributed Systems	6	

Total hours (Theory): 45
Total hours (Practical): 60

Total hours: 105

Detailed Syllabus:

Sr. No	Topic	Lecture Hours	Weight age (%)
1	Introduction Distributed System Concepts: Introduction Distributed Computing Models Software Concepts Issues in Designing Distributed Systems	4	5
	Client-Server ModelCase Studies: WWW 1.0, 2.0, 3.0		
2	 Basic Network Communication: LAN and WAN Technologies Classification of Networks Protocols for Network Systems ATM Protocols for Distributed Systems 	4	5
3	 Interprocess and Remote Communication: Message Passing IPC in Mach CBCAST protocol in ISIS RPC Introduction and Basics RPC Implementation and Communication Sun RPC RMI Implementation 	6	20
4	 Distributed System Synchronization: Introduction Clock Synchronization Logical and Global state Mutual Exclusion Election Algorithms Deadlocks in Distributed Systems Deadlocks in Message Communication 	7	20
5	 Distributed System Management: Introduction Resource Management Task Assignment Approach Load Balancing Approach Load Sharing Approach Process Management and Migration Threads Fault Tolerance 	6	20
6	Distributed Shared Memory: • DSM Concepts	6	10

	Total	45	100
	The Future of Emerging Trends		
	Cloud Computing		
	Service Oriented Architecture	U	10
	Grid Computing	6	10
	Emerging Trends Introduction		
8	Emerging Trends in Distributed Systems		
	Google File System		
	Sun Network File System		
	Replication in DFS		
	File Caching in DFS		
	DFS Implementation	U	10
	Semantics File Sharing	6	10
	DFS Design		
	File Models		
	Introduction DFS		
7	Distributed File System:		
	Heterogeneous and other DSM systems		
	 Implementing Issues in DSM Systems 		
	 Design Issues in DSM Systems 		
	Hardware DSM		

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

On successful completion of the course, the student will:

- On successful completion of the course, the student will be having the basic knowledge of Distributed Computing.
- Student will be able to understand Distributed Models.
- To know about interposes communication and remote communication.
- Student will be able to know distributed service oriented architecture.
- To know about emerging trends in distributed computing.
- Student will be able to know Distributed Shared Memory and File System.

Text Books:

- 1. Distributed Computing, Sunita Mahajan and Seema Shah, Oxford University
- 2. Distributed Operating Systems by P. K. Sinha, PHI

Reference Books:

- 1. Distributed Systems: Principles and Paradigms, Taunenbaum
- 2. Distributed Computing, Fundamentals, Simulations and Advanced topics, 2nd Edition, Hagit Attiya and Jennifer Welch, Wiley India
- 3. Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, and T. Kindberg,
- 4. Java Network Programming & Distributed Computing by David Reilly, Michael Reilly

List of Practicals:

Sr. No	Name of Experiment
1	Write a program to implement hello world service using RMI
2	Write a program to implement calculator using RMI
3	Write a program to implement time service using RMI
4	Write a program to implement hello world service using RPC
5	Write a program to implement date service using RPC
6	Write a program to implement Echo SOCKET in JAVA
7	Write a program to implement Echo server using RPCGEN
8	Write a program to implement producer-consumer concept using THREAD
9	Write a program to find the length of string using THREAD
10	Hadoop Distributed File System