Subject Name: Image Processing

Subject Code : CE 704-1 / IT 704-1

Teaching Scheme (Credits and Hours)

Teaching scheme					Evaluation Scheme					
L	Т	P	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	5	3	70	30	20	30	150

Learning Objectives:

- To understand the sensing, acquisition and storage of digital images.
- To study the image fundamentals and mathematical transforms necessary for image processing.
- To understand the digital processing systems and corresponding terminology.
- To understand the base image transformation domains and methods.
- To have an understanding of colour models, type of image representations and related statistics.
- To study the image enhancement techniques.
- To study image compression procedures.
- To study image segmentation and representation techniques.
- To study image restoration.

Outline of the Course:

Sr. No	Title of the Unit	Minimum Hours
1	Introduction to computer graphics	
2	Image processing fundamentals	6
3	Image Enhancement	10
4	Image Restoration	10
5	Colour Image Processing	12
6	Image Compression	10
7	Morphological Image Processing – Overview	

Total hours (Theory): 60

Total hours (Lab): 30

Total hours: 90

Detailed Syllabus:

Sr. No	Торіс	Lecture Hours	Weight age(%)		
1	Introduction to Computer Graphics:				
	Introduction of Coordinate representation and Pixel	4	8		
	Raster Scan & Random Scan systems	4	8		
	 Video controller and raster scan display processor. 				
2	Introduction to image processing:				
	Fundamentals				
	Applications				
	 Image processing system components 				
	Image sensing and acquisition	6	12		
	Sampling and quantization				
	Neighbors of pixel adjacency connectivity				
	regions and boundaries				
	Distance measures.				
3	Image Enhancement:				
	Frequency and Spatial Domain				
	Contrast Stretching	10	16		
	Histogram Equalization				
	• Low pass and High pass filtering.				
4	Image Restoration:				
	Noise models				
	 mean, order—statistics 	10	16		
	adaptive filters				
	Band reject, Band pass and notch filters				
5	Colour Image Processing:				
	Colour models	12 20			
	Pseudo colour Image processing	12	20		
	 Colour transformation and segmentation. 				
6	Image Compression:				
	Fundamentals				
	Models	10	16		
	Error free and lossy compression				
	Standards.				
	Morphological Image Processing: Overview				
7	Boundary extraction				
	Region filtering		10		
	Connected component extraction	8	12		
	Convex hull				
	Thinning; Thickening; skeletons; pruning; Image				
	segmentation.				
	Total	60	100		

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

On successful completion of the course, the student will:

- Be able to understand basic concepts image processing, image storage and types of transformations that can be applied to images.
- Be able to compare the domains and methods of image processing.
- Be able to check the correctness of algorithms using inductive proofs and loop invariants.
- Learn Image Restoration & Enhancement techniques, colour image processing.
- Be able to make proper use of image processing tools.
- Familiar with morphological image processing.

Text Book:

1. Digital Image Processing, Second Edition by Rafel C. Gonzalez and Richard E. Woods, Pearson Education

Reference books:

- 1. Digital Image Processing by Bhabatosh Chanda and Dwijesh Majumder, PHI
- 2. Fundamentals of Digital Image Processing by Anil K Jain, PHI
- 3. Digital Image Processing Using Matlab, Rafel C. Gonzalez and Richard E. Woods, Pearson Education

List of experiments:

Sr. No	Name of Experiment	
1	Image Printing Program Based on Halftoning.	
2	Reducing the Number of Intensity Levels in an Image.	
3	Zooming and Shrinking Images by Pixel Replication.	
4	Zooming and Shrinking Images by Bilinear Interpolation.	
5	Arithmetic Operations.	
6	Image Enhancement Using Intensity Transformations.	
7	Histogram Equalization.	
8	Spatial Filtering.	
9	Enhancement Using the Laplacian.	
10	Unsharp Masking.	