
Subject Name: Compiler Design

Subject Code: CE 701

Teaching Scheme (Credits and Hours)
Teaching scheme

Total

Credit

Evaluation Scheme

L T P Total Theory
Mid Sem

Exam
CIA Pract. Total

Hrs Hrs Hrs Hrs Hrs Marks Marks Marks Marks Marks

04 00 02 06 5 3 70 30 20 30 150

Learning Objectives:

The objective of this course is to introduce students to the following concepts underlying the
design and implementation of compilers.

 Describe the steps and algorithms used by compilers.
 Recognize the underlying formal models such as finite state automata, push-down

automata and their connection to language definition through regular expressions and
grammars.

 Discuss the effectiveness of optimization.
 Explain the impact of a separate compilation facility and the existence of program

libraries on the compilation process.

Outline of the Course:

Sr. No Title of the Unit Minimum
Hours

1 Introduction to Compiling 6
2 Lexical Analyzer 6
3 Parsing Theory

 Syntax Analyzer
 Syntax Directed Translation

18

4 Error Recovery 3
5 Type Checking 4
6 Run Time Environments 6
7 Intermediate Code Generation 5
8 Code Generation 7
9 Code Optimization 5

Total hours (Theory): 60

Total hours (Practical): 30

Total hours: 90

Detailed Syllabus:

Sr.
No

Topic Lecture
Hours

Weight
age(%)

1 Introduction to Compiling
 Overview of the Translation Process- A Simple Compiler,

Difference between interpreter, assembler and compiler
 Overview and use of linker and loader ,
 types of Compiler,
 Analysis of the Source Program,
 The Phases of a Compiler,
 Cousins of the Compiler, The Grouping of Phases,
 Front-end and Back-end of compiler,
 pass structure
 A simple one-pass compiler: overview

06 10

2 Lexical Analyzer
 Introduction to Lexical Analyzer,
 Input Buffering,
 Specification of Tokens,
 Recognition of Tokens,
 A Language for Specifying Lexical Analyzers,
 Finite Automata From a Regular Expression,
 Design of a Lexical Analyzer Generator,
 Optimization of DFA

06 20

3.1 Parsing Theory- Syntax Analyzer
 The role of a parser
 Context free grammars
 Top Down and Bottom up Parsing Algorithms,
 Top-Down Parsing,
 Bottom-Up Parsing,
 Operator-Precedence Parsing,
 LR Parsers,
 Using Ambiguous Grammars,
 Parser Generators,
 Automatic Generation of Parsers.

12 25

3.2 Parsing Theory- Syntax Directed Translation
Syntax-Directed Definitions,
Construction of Syntax Trees,
Bottom-Up Evaluation of S-Attributed Definitions,
L-Attributed Definitions,
 Syntax directed definitions and translation schemes

06 5

4 Error Recovery
 Error Detection & Recovery,
 Ad-Hoc and Systematic Methods

03 5

5 Type Checking
 Type systems
 Specification of a simple type checker
 Type conversions

04 5

6 Run Time Environments
 Source Language Issues,
 Storage Organization,
 Storage-Allocation Strategies,
 Parameter Passing,
 Symbol Tables,
 Language Facilities for Dynamic Storage Allocation,
 Dynamic Storage Allocation Techniques.

06 5

7 Intermediate Code Generation
 Different Intermediate Forms,
 Implementation of Three Address Code
 Intermediate code for all constructs of programming languages

(expressions, if-else, loops, switch case etc.)

05 10

8 Code Generation
 Issues in the Design of a Code Generator
 Basic Blocks and Flow Graphs
 A Simple Code Generator
 Register Allocation and Assignment
 The DAG Representation of Basic Blocks
 Peephole Optimization
 Dynamic Programming Code-Generation Algorithm

07 10

9 Code Optimization
 Global Data Flow Analysis,
 A Few Selected Optimizations like Command Sub Expression

Removal, Loop Invariant Code Motion, Strength Reduction Etc.
 Optimization of basic blocks

05 5

 60 100

Instructional Method and Pedagogy:

 At the start of course, the course delivery pattern, prerequisite of the subject will be
discussed.

 Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
 Attendance is compulsory in lecture and laboratory which carries 10 marks in overall

evaluation.
 One internal exam will be conducted as a part of internal theory evaluation.
 Assignments based on the course content will be given to the students for each unit and

will be evaluated at regular interval evaluation.

 Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in
the overall internal evaluation.

 The course includes a laboratory, where students have an opportunity to build an
appreciation for the concepts being taught in lectures.

 Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:
 Understand how the design of a compiler requires most of the knowledge acquired

during their study.
 Develop a firm and enlightened grasp of concepts learned earlier in their study like

higher level programming, assemblers, automata theory, and formal languages.
 Apply the ideas, the techniques, and the knowledge acquired for the purpose of other

language processor design.
 Working skills in theory and application of finite state machines, recursive descent,

production rules, parsing, and language semantics.
 Know about the powerful compiler generation tools, which are useful to the other

non-compiler applications

Reference Books:
1. Compilers, Principles, Techniques and Tools by A.V. Aho, R. Sethi and J.D.Ullman,

Pearson
2. Advanced compiler Design Implementation by Steven S. Muchnick
3. The Compiler Design handbook: Optimization and Machine Code Generation by Y. N.

Shrikant and Priti Shankar, Second Edition
4. Charles N. Fischer, Richard J. leBlanc, Jr.- Crafting a Compiler with C, Pearson

Education, 2008.

List of Practical:

Sr. No. Name of Experiment
1 Implement a C program to identify keywords and identifiers using finite automata.
2. Implementation of lex programs.

a. Write a lex program to identify numbers, words and other characters and
generate tokens for each.

b. Write a lex program to identify all occurrences of “LDRP” and replace it with
“COLLEGE”.

3. Implementation of lex programs
a. Write a lex program to display the length of each word.
b. Write a lex program to change the case of the first letter of every word.
c. Write a lex program to count the number of characters, words and lines in the

given input.
4. Implementation of lex programs

a. Write a lex program to remove empty lines.

b. Write a lex program that will replace the word “Hello” with “ldrp” if the line
starts with the letter ‘a’ and with “college” if it starts with ‘b’.

c. Write a lex program to identify words followed by punctuation marks.
5. Implementation of lex programs

a. Write a lex program to display the comments from given input file.
b. Write a lex program to identify all the lexemes from input file that follow

the given RE. Provide the RE and input file as command line arguments.
6. Generate a lexer for C program.
7. Write a C program to eliminate left recursion from a production.
8. Write a C program to apply left factoring to a production.
9. Implementation of Yacc programs.

a. Write a Yacc program for desktop calculator with ambiguous grammar.
b. Write a Yacc program for desktop calculator with ambiguous grammar and

additional information.
10. Implementation of Yacc program: Write a Yacc program for calculator with

unambiguous grammar.

