B.E Semester: VII Automobile Engineering

Subject Name: Elective-I: Fuel cell technology (AE706B)

Course Objective

- To present a problem oriented in depth knowledge of fuel cell technology.
- To address the underlying concepts, methods and application of fuel cell technology.

Teaching / Examination Scheme

SUBJECT		Teaching Scheme				Total Evaluation Scheme				Total		
CODE NAME		L	Т	Р	Total	Credit	THEORY		IE	CIA	PR. / VIVA	Marks
CODE	IVAIVIE	Hrs	Hrs	Hrs	Hrs	PY F.	Hrs	Marks	Marks	Marks	Marks	
AE706B	Elective-I: Fuel cell technology	4	0	0	4	4	3	70	30	20	-	120

Detailed Syllabus:

Topic	Details						
no							
1.	INTRODUCTION TO FUEL CELLS						
	Introduction – working and types of fuel cell – low, medium and high temperature fuel cell,						
	liquid and methanol types, proton exchange membrane fuel cell solid oxide, hydrogen fuel cells						
	 thermodynamics and electrochemical kinetics of fuel cells. 						
2.	FUEL CELLS FOR AUTOMOTIVE APPLICATIONS						
	Fuel cells for automotive applications – technology advances in fuel cell vehicle systems –						
	onboard hydrogen storage – liquid hydrogen and compressed hydrogen – metal hydrides, fuel						
	cell control system – alkaline fuel cell – road map to market.						
3.	FUEL CELL COMPONENTS AND THEIR IMPACT ON PERFORMANCE						
100	Fuel cell performance characteristics – current/voltage, voltage efficiency and power density,						
1	ohmic resistance, kinetic performance, mass transfer effects – membrane electrode assembly						
- 1	components, fuel cell stack, bi-polar plate, humidifiers and cooling plates.						
4.	FUELING						
	Hydrogen storage technology – pressure cylinders, liquid hydrogen, metal hydrides, carbon						
	fibers – reformer technology – steam reforming, partial oxidation, auto thermal reforming – CO						
	removal, fuel cell technology based on removal like bio-mass.						
5.	FUEL CYCLE ANALYSIS						
	Introduction to fuel cycle analysis – application to fuel cell and other competing technologies						
	like battery powered vehicles, SI engine fueled by natural gas and hydrogen and hybrid electric						
	vehicle.						

Lesson planning

SR. NO	DATE/WEEK	<u>UNIT NO</u>	%WEIGHTAGE	TOPIC NO
1	1 ST , 2 ND , 3 RD	Unit 1	20 % .	1
2	4 TH ,5 TH , 6 TH	Unit 2	20 %	2
3	7 TH ,8 TH , 9 TH	Unit 3	20 %	3
4	10^{TH} , 11^{TH} , 12^{TH}	Unit 4	20 %	4
5	13 TH ,14 TH , 15 TH	Unit 5	20 %	5

Instructional Method & Pedagogy

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all topics while teaching and conduction of all examinations.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.

Students Learning Outcomes

- The student can identify different areas of fuel cell technology.
- Can find the applications of all the areas in day to day life.

Recommended Demonstrate Materials

- 1. Fuel Cells for automotive applications professional engineering publishing UK. ISBN 1-86058 4233, 2004.
- 2. Fuel Cell Technology Handbook SAE International Gregor Hoogers CRC Press ISBN 0-8493-0877-1-2003.