Subject Name: Distributed Systems Subject Code: CE 606-1 / IT 606-1 ## **Teaching Scheme (Credits and Hours)** | Teaching scheme | | | | | Evaluation Scheme | | | | | | |-----------------|-----|-----|-------|-----------------|-------------------|-------|-----------------|-------|--------|-------| | L | Т | P | Total | Total
Credit | Theory | | Mid Sem
Exam | CIA | Pract. | Total | | Hrs | Hrs | Hrs | Hrs | | Hrs | Marks | Marks | Marks | Marks | Marks | | 03 | 00 | 04 | 07 | 05 | 3 | 70 | 30 | 20 | 30 | 150 | ## **Learning Objectives:** The objective of this course is - Understanding Remote Communication and Interprocess Communication - Study about various distributed client server models - Create an awareness of the major technical challenges in distributed systems design and implementation - Emerging trends in distributed computing - Understanding Distributed Shared Memory and File System ## **Outline of the Course:** | Sr. No | Title of the Unit | Minimum
Hours | | |--------|--|------------------|--| | 1 | Introduction Distributed System Concepts | 4 | | | 2 | Basic Network Communication | 4 | | | 3 | Interprocess and Remote Communication | 6 | | | 4 | Distributed System Synchronization | 7 | | | 5 | Distributed System Management | 6 | | | 6 | Distributed Shared Memory | 6 | | | 7 | Distributed File System | 6 | | | 8 | Emerging Trends in Distributed Systems | 6 | | Total hours (Theory): 45 Total hours (Practical): 60 **Total hours: 105** # **Detailed Syllabus:** | Sr.
No | Topic | Lecture
Hours | Weight age (%) | |-----------|---|------------------|----------------| | 1 | Introduction Distributed System Concepts: Introduction Distributed Computing Models Software Concepts Issues in Designing Distributed Systems | 4 | 5 | | | Client-Server ModelCase Studies: WWW 1.0, 2.0, 3.0 | | | | 2 | Basic Network Communication: LAN and WAN Technologies Classification of Networks Protocols for Network Systems ATM Protocols for Distributed Systems | 4 | 5 | | 3 | Interprocess and Remote Communication: Message Passing IPC in Mach CBCAST protocol in ISIS RPC Introduction and Basics RPC Implementation and Communication Sun RPC RMI Implementation | 6 | 20 | | 4 | Distributed System Synchronization: Introduction Clock Synchronization Logical and Global state Mutual Exclusion Election Algorithms Deadlocks in Distributed Systems Deadlocks in Message Communication | 7 | 20 | | 5 | Distributed System Management: Introduction Resource Management Task Assignment Approach Load Balancing Approach Load Sharing Approach Process Management and Migration Threads Fault Tolerance | 6 | 20 | | 6 | Distributed Shared Memory: • DSM Concepts | 6 | 10 | | | Total | 45 | 100 | |---|--|----|-----| | | The Future of Emerging Trends | | | | | Cloud Computing | | | | | Service Oriented Architecture | U | 10 | | | Grid Computing | 6 | 10 | | | Emerging Trends Introduction | | | | 8 | Emerging Trends in Distributed Systems | | | | | Google File System | | | | | Sun Network File System | | | | | Replication in DFS | | | | | File Caching in DFS | | | | | DFS Implementation | U | 10 | | | Semantics File Sharing | 6 | 10 | | | DFS Design | | | | | File Models | | | | | Introduction DFS | | | | 7 | Distributed File System: | | | | | Heterogeneous and other DSM systems | | | | | Implementing Issues in DSM Systems | | | | | Design Issues in DSM Systems | | | | | Hardware DSM | | | #### **Instructional Method and Pedagogy:** - At the start of course, the course delivery pattern, prerequisite of the subject will be discussed. - Lectures will be conducted with the aid of multi-media projector, black board, OHP etc. - Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation. - One internal exam will be conducted as a part of internal theory evaluation. - Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation. - Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation. - The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures. - Experiments shall be performed in the laboratory related to course contents. #### **Learning Outcome:** On successful completion of the course, the student will: - On successful completion of the course, the student will be having the basic knowledge of Distributed Computing. - Student will be able to understand Distributed Models. - To know about interposes communication and remote communication. - Student will be able to know distributed service oriented architecture. - To know about emerging trends in distributed computing. - Student will be able to know Distributed Shared Memory and File System. #### **Text Books:** - 1. Distributed Computing, Sunita Mahajan and Seema Shah, Oxford University - 2. Distributed Operating Systems by P. K. Sinha, PHI #### **Reference Books:** - 1. Distributed Systems: Principles and Paradigms, Taunenbaum - 2. Distributed Computing, Fundamentals, Simulations and Advanced topics, 2nd Edition, Hagit Attiya and Jennifer Welch, Wiley India - 3. Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, and T. Kindberg, - 4. Java Network Programming & Distributed Computing by David Reilly, Michael Reilly #### **List of Practicals:** | Sr. No | Name of Experiment | |--------|---| | 1 | Write a program to implement hello world service using RMI | | 2 | Write a program to implement calculator using RMI | | 3 | Write a program to implement time service using RMI | | 4 | Write a program to implement hello world service using RPC | | 5 | Write a program to implement date service using RPC | | 6 | Write a program to implement Echo SOCKET in JAVA | | 7 | Write a program to implement Echo server using RPCGEN | | 8 | Write a program to implement producer-consumer concept using THREAD | | 9 | Write a program to find the length of string using THREAD | | 10 | Hadoop Distributed File System |