Subject Name: High Performance Computing

Subject Code: IT 802-2 / CE 802-2

Teaching Scheme (Credits and Hours)

Teaching scheme					Evaluation Scheme					
L	Т	P	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	02	05	4	3	70	30	20	30	150

LEARNING OBJECTIVES:

The objective of this course is

- To Study various computing technology architecture.
- To know Emerging trends in computing technology.
- To highlight the advantage of deploying computing technology.

OUTLINE OF THE COURSE:

Sr. No	Title of the Unit	Minimum Hours
1	Cluster Computing and its Architecture	10
2	Cluster Setup and Administration	5
3	Introduction to Grid and its Evolution	6
4	Introduction to Cloud Computing	8
5	Nature of Cloud	11
6	Cloud Elements	5

Total hours (Theory): 45

Total hours (Practical): 30

Total hours: 75

DETAILED SYLLABUS:

Sr.	Торіс	Lecture	Weight age		
No		Hours	(%)		
1	Cluster Computing and its Architecture:				
	Ease of Computing				
	Scalable Parallel Computer Architecture				
	 Towards Low Cost Parallel Computing & Motivation 				
	Windows opportunity	10			
	A Cluster Computer And Its Architecture	10	20		
	Cluster Classification				
	 Commodity Components for Clusters 				
	 Network Services/Communication SW 				
	Cluster Middleware and Single Systems Image				
	Resource management & Scheduling (RMS)				
2	Cluster Setup and Administration:				
	Introduction				
	Setting up the cluster	5	1.4		
	Security		14		
	System Monitoring				
	System Tuning				
3	Introduction to Grid and its Evolution:				
	 Introduction to Grid and its Evolution: 				
	Beginning of the Grid	6	1.4		
	Building blocks of Grid		14		
	Grid Application and Grid Middleware				
	Evolution of the Grid: First, Second & Third Generation				
4					
	Defining Clouds				
	Cloud Providers				
	Consuming Cloud Services				
	 Cloud Models – Iaas, Paas, SaaS 	8	18		
	Inside the cloud				
	Administering cloud services				
	Technical interface				
	Cloud resources				
5	Nature of Cloud:				
	Tradition Data Center				
	Cost of Cloud Data Center				
	Scaling computer systems	11			
	Cloud work load		22		
	Managing data on clouds				
	 Public, private and hybrid clouds 				
	- 1 done, private and nyorid clouds				

6	Cloud Elements:		
	Infrastructure as a service	5	12
	Platform as a service		12
	Software as a service		

INSTRUCTIONAL METHOD AND PEDAGOGY

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

- On successful completion of the course, the student will be having the basic knowledge of computing technology.
- Student will be able to understand architecture of computing technology.
- Student will be able to know cloud computing service models.
- Know about emerging trends in computing technology.
- Student will be able to know big data and hadoop architecture.

TEXT BOOKS:

- 1. High Performance Cluster Computing, Volume 1, Architecture and Systems, Rajkumar Buyya, Pearson Education.
- 2. Berman, Fox and Hey, Grid Computing Making the Global Infrastructure a Reality, Wiley India.
- 3. Hurwitz, Bllor, Kaufman, Halper, Cloud Computing for Dummies, Wiley India.

REFERENCE BOOKS:

- 1. Ronald Krutz, Cloud Security, Wiley India.
- 2. Cloud Computing, A Practical Approach, Anthony Velte, Toby Velte, Robert Elsenpeter, McGrawHill.

LIST OF PRACTICALS:

Sr. No	Name of Experiment			
1	To study the basic commands of linux.			
2	To establish Beowulf Cluster using MPI(Message Passing Interface) Library.			
3	Installation and configuration of Alchemi Grid.			
4	Running a sample application on Alchemi Grid and analysing it.			
5	To study a Grid Simulation Toolkit.			
6	To run two sample programs using GridSim Toolkit.			
7	To study a Cloud Simulation Toolkit.			
8	To setup Cloud.			